Ответы на ручную практическую 2 по математике. Работа оценена на высший балл.
Пожалуйста, перепишите ответы самостоятельно, своей рукой, чтобы исключить снижение баллов.
Задание 1.
Таблица – «Виды моделирования при решении текстовых задач»
В таблице «Виды моделирования при решении текстовых задач» заполните позицию «Необходимо определить» в графе «Интерпретация модели».
Задание 2.
Используя диаграммы Эйлера-Венна решить задачу.
При выборе кружков для детей оказалось, что 60% родителей желают, чтобы их ребенок посещал кружок рисования, 50% предпочли занятия по гимнастике, 50% отметили, что выбрали бы занятия музыкой. При этом 30% родителей предпочитают, чтобы их дети посещали занятия и по рисованию, и по гимнастике, 20% – сделали выбор в пользу занятий по гимнастике и музыке, а 40% родителей – пожелали бы, чтобы ребенок рисовал и занимался хоровым пением, и только 10% из них выразили свое мнение за посещение детьми всех кружков. Определите процентное соотношение родителей, которые:
1) не желают водить детей в кружки;
2) выбрали не менее двух кружков.
Задание 3
При измерении получены данные:
Выполните задания с учетом исходных данных, подробно описывая ход решения.
a) Построить статистический ряд распределения частот.
b) Построить полигон распределения.
c) Вычислить выборочную среднюю, дисперсию, моду, медиану.
d) Построить выборочную функцию распределения.
Задание 4 (максимальное количество баллов - 4 балла)
Решите примеры, связанные с погрешностями, подробно описывая ход решения.
a) Округлить число 4,45575250 до шести, пяти, четырех, трех, двух и одного десятичных знаков; до целого числа.
b) Число 12,75 определено с относительной погрешностью 0,3, %. Найдите абсолютную погрешность округления.
c) Определите верные и сомнительные цифры числа 13,27 ± 0,03.
Задание 5
Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением.
На стороне AC треугольника ABC отмечена точка D так, что AD=3см, DC=10см. Площадь треугольника ABC равна 39 см2. Найдите площадь треугольника ABD.
Задание 6 (максимальное количество баллов – 4 балла)
Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением.
Биссектриса угла A параллелограмма ABCD пересекает его сторону BC в точке F. Найдите площадь параллелограмма ABCD, если BF=4 см, FC=2 см, а угол ABC равен 1500
Задание 7 (максимальное количество баллов – 3 балла)
Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением.
Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6см и 8см, а боковое ребро призмы равно 12см.