Сделана в январе 2019 года.
Целью данной работы является анализ классической задачи оптимизации, решение методом множителей Лагранжа и метода динамического программирования.
Для достижения поставленной цели необходимо решить следующие задачи:
- рассмотреть классическую задачу оптимизации, решение методом множителей Лагранжа;
- проанализировать метод динамического программирования.
Теоретической базой написания работы послужили труды таких авторов, как В.Г. Бардаков, М.Ю. Галкина, И.Н. Порублеви др., а также источники сети интернет.
В работе использовались методы теоретического анализа литературы по исследуемой проблеме, методы изучения, обобщения и анализа.
Структура работы состоит из введения, двухразделов, заключения и списка используемых источников.
Работа была успешно сдана - заказчик претензий не имел.
Уникальность работы по Antiplagiat.ru на 26.06.2020 г. составила 65%.
Введение 3
1 Классическая задача оптимизации, решение методом множителей Лагранжа 4
2. Метод динамического программирования 6
Заключение 10
Список используемых источников 11
1. Бардаков, В.Г. Методы оптимальных решений: учебное пособие / В.Г. Бардаков, О.В. Мамонов. – Новосибирск: Новосибирский государственный аграрный университет, 2013. – 230 c.
2. Галкина, М.Ю. Методы оптимальных решений: учебно-методическое пособие / М.Ю. Галкина. – Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2016. – 89 c.
3. Майорова, Н.Л. Методы оптимизации: учебное пособие / Н.Л. Майорова, Д.В. Глазков; Яросл. гос. ун-т им. П. Г. Демидова. – Ярославль: ЯрГУ, 2015. – 112 с.
4. Порублев И.Н. Алгоритмы и программы. Решение олимпиадных задач / И.Н. Порублев, А.Б. Ставровотский. – М.: ООО «И.Д. Вильямс» , 2016. – 456 с.
5. Условная оптимизация. Метод множителей Лагранжа [Электронный ресурс]. – URL: http://simenergy.ru/math-analysis/solution-methods/88-lagrange-method (дата обращения: 20.11.18).