Прикладной статистический анализ (тест с ответами Синергия/МОИ/ МТИ /МОСАП)

Раздел
Математические дисциплины
Тип
Просмотров
174
Покупок
17
Антиплагиат
Не указан
Размещена
28 Мая в 13:24
ВУЗ
МФПУ Синергия / Московский открытый институт (МОИ) / Московский технологический институт (МТИ) / МОСАП
Курс
Не указан
Стоимость
300 ₽
Демо-файлы   
1
jpeg
Результат 100 баллов из 100 Результат 100 баллов из 100
132.3 Кбайт 132.3 Кбайт
Файлы работы   
1
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
pdf
Прикладной статистический анализ (ОТВЕТЫ)
752 Кбайт 300 ₽
Описание

ИТОГОВЫЙ ТЕСТ

60 вопросов с ответами

Последний раз тест был сдан на 100 баллов из 100 "Отлично".

Год сдачи -2023-2024.

***ВАЖНО*** Перед покупкой запустите тест и сверьте подходят ли эти ответы именно Вам***

После покупки Вы получите файл с ответами на вопросы которые указаны ниже:

ПО ВСЕМ ВОПРОСАМ - ПИШИТЕ В ЛИЧНЫЕ СООБЩЕНИЯ✉️

Оглавление

1. Аксиоматический подход к теории вероятностей был разработан

*Колмогоровым

*Гауссом

*Марковым

*Коши

 2. Базой методов статистических испытаний являются

*датчики случайных чисел

*датчики псевдослучайных чисел

*метод складного ножа

*байесовские оценки

 3. В вероятностной теории статистических методов выборка обычно моделируется как конечная последовательность

*зависимых одинаково распределенных случайных величин или векторов независимых

*экспоненциально распределенных случайных величин или векторов независимых случайных векторов

*независимых одинаково распределенных случайных величин или векторов

4. В классической математической статистике элементы выборки - это

*числа

*Толерантности

*Векторы

*Интервалы 

5. В модели случайной выборки данные рассматриваются как реализации

*независимых одинаково распределенных случайных величин

*независимых случайных величин

*зависимых одинаково распределенных случайных величин

*одинаково распределенных случайных величин 

6. В непараметрической постановке вероятностной модели статистических данных требуется

*принадлежность функций распределения определенному параметрическому семейству

*непрерывность функций распределения

*конечность центральных и начальных моментов второго порядка

*разрывность функций распределения

7. В общем случае в системе уравнений максимального правдоподобия число уравнений равно

*объему выборки

*числу неизвестных параметров, подлежащих оцениванию

*половине объема выборки

*двум

8. Верно, что в статистике интервальных данных, учитывающей погрешности измерений

*не имеет смысла рассматривать объемы выборок, большие "рационального объема выборки"

*не существует несмещенных оценок

*существуют состоятельные оценки

*оценки максимального правдоподобия лучше оценок метода моментов 

9. Взвешенная сумма значений случайной величины с весами, равными вероятностям соответствующих элементарных событий, - это

*Дисперсия

*математическое ожидание

*среднеквадратическое отклонение

*эксцесс 

10. Временной ряд, для которого совместные функции распределения для любого числа моментов времения не меняются со временем, называется

*стационарным

*Нестационарным

*Непереодическим

*Случайным 

11. Выборочная медиана может выступать оценкой

*Дисперсии

*математического

*коэффициента вариации

*моды

12. Выборочное среднее квадратическое отклонение – это

*квадратный корень из выборочной дисперсии

*неотрицательный квадратный корень из выборочной дисперсии

*квадрат выборочной дисперсии

*квадрат среднего арифметического 

13. Выделение групп однородных объектов, сходных между собой, при резком отличии этих групп друг от друга, - это цель

*кластерного анализа

*дискриминантного анализа

*факторного анализа

*регрессионного анализа

 14. Дисперсия – это

*центральный момент порядка 1

*центральный момент порядка 2

*начальный момент порядка 2

*начальный момент порядка 3

15. Дисперсия может выступать

*показателем различия

*Расстоянием

*мерой близости

*показателем сходства

16. Для сравнения критериев используется подход,основанный на

*асимптотической относительной эффективности

*теореме Фишера

*рандомизации

*инфинуме эмпирического процесса 

17. Если вероятностно-статистическая модель полностью описывается конечномерным вектором фиксированной размерности, она называется

*Непараметрической

*Полупараметрической

*Полунепараметрической

*параметрической 

18. Если математическое ожидание оценки равно значению оцениваемого параметра, оценка называется

*Эффективной

*Состоятельной

*несмещенной

*минимальной

 19. Если на некотором пространстве определены два или больше расстояний, то

*их отношение - также расстояние

*их сумма не является расстоянием

*их сумма - также расстояние

*их сумма-скорость

20. Если предположение о двумерной нормальности анализируемых случайных величин выполнено, то из равенства нулю теоретического коэффициента корреляции

*следует независимость случайных величин

*не следует независимость случайных величин

*следует функциональная связь случайных величин

*не следует наличие тесной связи между случайными величинами

21. Если при безграничном возрастании объема выборки оценка сходится по вероятности к значению оцениваемого параметра, она называется

*Эффективной

*состоятельной

*Несмещенной

*Минимальной

22. Законы больших чисел позволяют описать поведение

*произведений случайных величин

*сумм случайных величин

*отношений случайных величин

*отношений детерминированных величин

 23. Использование критерия Стьюдента для проверки однородности при отсутствии нормальности и равенства дисперсий - это пример использования

*низких статистических технологий

*средних статистических технологий

*классических статистических технологий

*высоких статистических технологий 

24. К классическим статистическим технологиям не относятся использование

*метода наименьших квадратов

*статистик типа Колмогорова, Смирнова, омега-квадрат

*непараметрического коэффициента корреляции Спирмена

*теории нечетких множеств 

25. Компьютерные технологии, в которых в модель реального явления или процесса искусственно вводится большое число случайных элементов, - это

*метод статистических испытаний

*метод наименьших квадратов

*технологии ошибок измерений

*метод приближения подобным

26. Математическое ожидание, медиана и мода совпадают для

*симметричных распределений

*любых непрерывных распределений

*только для равномерного распределения

*только для нормального распределения

27. Математической моделью для выражения представлений о сходстве выступает

*Толерантность

*ранжировка

*Квазипорядок

*разбиение

 28. На втором этапе решения любой прикладной задачи математическими методами/методами прикладной статистики осуществляется

*сбор информации

*переход от математических выводов к практической проблеме

*внутриматематическое изучение и решение задачи

*переход от исходной проблемы до теоретической чисто математической задачи 

29. На первом этапе решения любой прикладной задачи математическими методами/методами прикладной статистики осуществляется

*сбор информации

*переход от математических выводов к практической проблеме

*внутриматематическое изучение и решение задачи

*переход от исходной проблемы до теоретической чисто математической задачи

30. На третьем, последнем этапе решения любой прикладной задачи математическими методами/методами прикладной статистики осуществляется

*cбор информации

*переход от математических выводов к практической проблеме

*внутриматематическое изучение и решение задачи

*переход от исходной проблемы до теоретической чисто математической задачи 

31. Необходимость группирования наблюдений - это особенность применения такого критерия согласия, как

*хи-квадрат

*омега-квадрат

*Колмогорова

*Вольфовица 

32. Номер объекта в упорядоченном по значению некоторой характеристики ряду объектов – это

Вектор

*ранг

Ранжировка

Цензурированное наблюдение 

33. Номинальная шкала задается группой всех

*взаимнооднозначных преобразований

*строго возрастающих преобразований

*строго убывающих преобразований

*линейных возрастающих преобразований

34. Нормальное распределение относится к

*однопараметрическим

*двухпараметрическим

*трехпараметрическим

*четырехпараметрическим

35. ОМП для математического ожидания нормально распределенной случайной величины является

*среднее арифметическое

*мода

*Медиана

*эксцесс 

36. Отнесение вновь поступающего объекта к одному из заданных плотностями вероятностей или обучающими выборками классов - это задача

*кластерного анализа

*дискриминантного анализа

*факторного анализа

*регрессионного анализа 

37. Отношение среднего квадратического отклонения к математическому ожиданию – это

*дециль

*коэффициент вариации

*медиана

*коффициент эксцесса

 38. Параметрами нормального распределения являются

*только математическое

*ожидание медиана и дисперсия

*только среднеквадратическое отклонение

*математическое ожидание и дисперсия 

39. Понятию центра тяжести в механике в теории вероятностей соответствует понятие

*дисперсии

*математического ожидания

*среднеквадратического отклонения

*эксцесса

40. Порядковая шкала задается группой всех

*взаимнооднозначных преобразований

*строго возрастающих преобразований

*строго убывающих преобразований

*линейных возрастающих преобразований

41. Представление объектов точками в пространстве небольшой размерности с максимально возможным сохранением расстояний между точками- - это цель

*кластерного анализа

*многомерного шкалирования

*факторного анализа

*логлинейного анализа 

42. При изучении двухвыборочных статистик возникает проблема

*перехода к пределу по объему выборки

*перехода к пределу по двум параметрам

*наследования сходимости

*асимптотической размерности

43. При проверке однородности математических ожиданий по большим выборкам на основе критерия Стьюдента можно использовать квантили

*гамма-распределения

*нормального распределения

*распределения хи-квадрат

*линейного распределения

 44. При проверке равенства математических ожиданий двух независимых выборок большого объема с помощью критерия Стьюдента можно использовать таблицы квантилей

*нормального распределения

*распределения Коши

*распределения Парето

*экспоненциального распределения 

45. Разбиение совокупности объектов на группы сходных между собой – это

*толерантность

*ранжировка

*классификация

*бутстреп

 46. Совокупность всех возможных исходов опыта (эксперимента) – это

*пространство элементарных событий (исходов)

*выборка

*событие

*пространство событий

47. Согласно лемме Неймана-Пирсона решение об отнесении вновь поступающего объекта к одному из двух классов принимается на основе

*линейной комбинации плотностей распределения рассматриваемых классов

*разности функций распределения рассматриваемых классов

*отношения плотностей распределения рассматриваемых классов

*критерия Фишера 

48. Согласно результатам Хинчина, существование у исследуемых случайных величин математического ожидания является необходимым и достаточным условием применимости закона больших чисел, если случайные величины

*имеют ограниченные дисперсии

*имеют неограниченные дисперсии

*попарно независимы

*независимы в совокупности

49. Согласно центральной предельной теореме, если результат измерения складывается под действием многих причин, причем каждая из них вносит лишь малый вклад, а совокупный итог определяется аддитивно, то распределение результата близко к

*равномерному

*нормальному

*хи-квадрат

*логарифмически нормальному 

50. Состоятельной непараметрической оценкой функции распределения числовой случайной величины является

*эмпирическая функция плотности

*эмпирическая функция распределения

*функция плотности

*функция Кемени 

51. Состоятельность оценок максимального правдоподобия следует из

*теоремы Фишера

*центральной предельной теоремы

*закона больших чисел

*теоремы о сходимости 

52. Способ оценивания, заключающийся в том, что значение оценки принимается за неизвестное значение параметра распределения, называется

*точным

*точечным

*интервальным

*доверительным 

53. Среднее арифметическое является состоятельной оценкой математического ожидания

*только если исходное распределение нормальное

*при любом исходном распределении, если математическое ожидание существует

*только если существует дисперсия

*если распределение бимодально 

54. Температура по Кельвину измеряется в

*порядковой шкале

*шкале интервалов

*шкале отношений

*шкале разностей

55. Температура по Цельсию измеряется в

*порядковой шкале

*шкале интервалов

*шкале отношений

*шкале разностей 

56. Тот факт, что выборочные характеристики при возрастании числа опытов приближаются к теоретическим, следует из

*закона больших чисел

*центральной предельной теоремы

*неравенства Коши-Буняковского

*неравенства Рао-Крамера

57. Уровень значимости – это

*вероятность отвергнуть нулевую гипотезу, когда она верна

*вероятность отвергнуть нулевую гипотезу, когда она неверна

*вероятность не отвергнуть нулевую гипотезу, когда она верна

*вероятность не отвергнуть нулевую гипотезу, когда она неверна

58. Функция правдоподобия – это

*любая функция от случайной выборки

*функция распределения

*совместная плотность распределения вероятносностей, соответствующая выборке

*наиболее правдоподобная функция от случайной выборки 

59. Функция правдоподобия представляется в виде произведения плотностей для отдельных элементов выборки

*если элементы выборки зависимы

*если элементы выборки независимы

*если элементы выборки имеют нормальнное распределение

*если объем выборки меньше 10

60. Шкала интервалов задается группой всех

*взаимнооднозначных преобразований

*строго возрастающих преобразований

*строго убывающих преобразований

*линейных возрастающих преобразований

Список литературы

Прикладной статистический анализ

УЧЕБНЫЕ МАТЕРИАЛЫ

Тема 1. Базовые распределения, статистики и их свойства. Точечное и интервальное оценивание. Основы проверки гипотез

Тема 2. Проверка параметрических гипотез: нормальное распределение и распределение Бернулли. Проверка непараметрических гипотез

Тема 3. Множественная проверка гипотез. Анализ зависимостей: корреляции и таблицы сопряжённости

Тема 4. Дисперсионный анализ (ANOVA)

Тема 5. Линейный регрессионный анализ

Тема 6. Обобщения линейной регрессии: логистическая, пуассоновская

Тема 7. Анализ временных рядов

Тема 8. Последовательный анализ. Анализ и выявление причинно-следственных связей

Литература

Вам подходит эта работа?
Похожие работы
Математическая статистика
Задача Задача
4 Ноя в 15:01
14 +1
0 покупок
Математическая статистика
Задача Задача
4 Ноя в 14:50
13 +1
0 покупок
Математическая статистика
Контрольная работа Контрольная
3 Ноя в 17:51
20 +4
0 покупок
Математическая статистика
Контрольная работа Контрольная
30 Окт в 17:21
31 +4
0 покупок
Математическая статистика
Тест Тест
23 Окт в 16:37
39
0 покупок
Другие работы автора
Премиум
Железобетонные конструкции
Тест Тест
29 Окт в 02:53
54 +10
2 покупки
Премиум
Электрические машины
Тест Тест
22 Окт в 13:06
146 +9
4 покупки
Премиум
Информационные системы
Тест Тест
11 Окт в 15:24
187 +5
7 покупок
Премиум
Микроэкономика
Тест Тест
11 Окт в 13:37
193 +13
4 покупки
Премиум
Конфликтология
Тест Тест
8 Окт в 11:47
288 +6
1 покупка
Премиум
Корпоративное право
Тест Тест
8 Окт в 11:17
240 +6
1 покупка
Премиум
Русский язык и культура речи
Тест Тест
2 Окт в 10:43
190 +8
4 покупки
Премиум
Финансовое право
Тест Тест
8 Сен в 21:46
240 +8
6 покупок
Премиум
Юриспруденция
Тест Тест
8 Сен в 21:17
186 +19
1 покупка
Премиум
Экономика
Тест Тест
6 Авг в 14:28
91 +5
3 покупки
Премиум
Маркетинг продаж
Тест Тест
15 Июл в 02:53
308 +6
7 покупок
Премиум
Маркетинг
Тест Тест
15 Июл в 00:48
1 267 +7
36 покупок
Премиум
Инвестиционный менеджмент
Тест Тест
11 Июл в 02:02
511 +7
15 покупок
Темы журнала
Показать ещё
Прямой эфир