ТПУ ТВиМС Вариант 2 (10 заданий) Из 100 конденсаторов за время Т из строя выходят 7 конденсатора.

Раздел
Математические дисциплины
Просмотров
166
Покупок
0
Антиплагиат
Не указан
Размещена
2 Окт 2022 в 18:05
ВУЗ
НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Курс
Не указан
Стоимость
800 ₽
Демо-файлы   
1
pdf
Пример по мат.стат (анализу данных) Пример по мат.стат (анализу данных)
885.1 Кбайт 885.1 Кбайт
Файлы работы   
1
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
doc
ТВиМС Вариант 2 (10 заданий)
697 Кбайт 800 ₽
Описание

Задача 1

Из 100 конденсаторов за время Т из строя выходят 7 конденсатора. Для контроля выбирают 5 конденсаторов. Найти вероятность того, что среди них за время Т из строя выйдет ровно 1 конденсатор, используя классическое определение вероятности, формулу Бернулли, формулу Пуассона и локальную теорему Лапласа.

Задача 2

Система S состоит из трех независимых подсистем Sа, Sb и Sc. Неисправность хотя бы одной подсистемы ведет к неисправности всей системы (подсистемы соединены последовательно). Каждая подсистема состоит из двух независимых дублирующих блоков  (k = 1,2) (схема параллельного подсоединения блоков в подсистемах)

Найти надежность системы – вероятность того, что система будет исправна в течение некоторого времени, если известны надежности блоков P(а) = 0,8, P(bk) = 0,9, P(сk) = 0,7.

Задача 3

Испытывается прибор, состоящий из двух узлов а и b, соединенных последовательно в смысле надежности. Надежности (вероятности безотказной работы за время Т) узлов а и b известны P(а) = 0,8, P(b) = 0,9. Узлы отказывают независимо друг от друга. По истечении времени Т выяснилось, что прибор неисправен. Найти с учетом этого вероятность того, что неисправен только узел а. 

Задача 4

Из партии, содержащей 100 изделий, среди которых имеется 20 дефектных, выбраны случайным образом 5 изделий для проверки их качества. Для случайного числа Х дефектных изделий, содержащихся в выборке, построить ряд распределений, функцию распределения и их график, найти ее числовые характеристики. 

Задача 5

Задана плотность распределения f(х) случайной величины Х: 

 f(x) = A*(1-x^2) IxI <=1

0 IxI > 1

Требуется найти коэффициент А, построить график f(х), найти функцию распределения F(х) и построить ее график, найти вероятность попадания величины Х на участок от 0 до 0,25. Найти ее числовые характеристики случайной величины Х.

Задача 6

По выборке объема n = 100 построен ряд распределения:

x -1,75 -1,25 -0,75 -0,25 0,25 0,75 1,25 1,75

p 0,04 0,11 0,19 0,28 0,18 0,10 0,07 0,03

Построить гистограмму, полигон и эмпирическую функцию распределения. Найти точечные оценки математического ожидания, дисперсии, среднеквадратичного отклонения, асимметрии и эксцесса.

Задача 7

Найти доверительный интервал с надежностью β = 0,99 неизвестного математического ожидания нормальной случайной величины Х, зная  20,9, n = 26 если 1)  = 2, 2) s = 2. 

Задача 8

По результатам эксперимента получена таблица наблюдений системы случайных величин (X, Y):

Y X 1 2 3 4 5 6

0,5 0,01 0,04 0,02 0 0 0

1,0 0 0,1 0,12 0,07 0,03 0

1,5 0 0 0,05 0,1 0,14 0,01

2 0 0 0,01 0,05 0,09 0,08

2,5 0 0 0 0,02 0,01 0,05

Оценить данную матрицу распределения (X, Y) на регрессию видов  f(x) = b1 + b2*x и f(x) = b1 + b2*x + b3*x^2

Задача 9

По двум независимым выборкам объемов nX =11 и nY = 16 нормальных распределений найдены выборочные значения математических ожиданий x = 30,5 и y = 29,0 и исправленные выборочные дисперсии sx2 = 0,8 и sy2 = 0,6. При уровне значимости = 0.05 проверить нулевую гипотезу H0: mX = mY при конкурирующей H1: mX mY.

Задача 10

По критерию Пирсона при уровне значимости α = 0,05 проверить гипотезу о распределении случайной величины Х по нормальному закону, если задано nk попаданий выборочных значений случайной величины Х в под интервал = (ak, bk):

Ряд распределения случайной величины

2-4 4-6 6-8 8-10 10-12 12-14 14-16

6 10 14 20 30 15 5

Оглавление

Содержание

Задача 1 3

Задача 2 5

Задача 3 6

Задача 4 7

Задача 5 9

Задача 6 12

Задача 7 15

Задача 8 16

Задача 9 19

Задача 10 20

Список использованных источников 23

Список литературы

Не подошли данные? Другой вариант? Не проблема! Напишите мне, оформите заказ и в течение 1-5 дней (в зависимости от загруженности) я выполню вашу работу.

Работа была выполнена в 2022 году, принята преподавателем без замечаний.

Пример оформления задач для общего представления о качестве приобретаемой работы можно посмотреть в моем профиле (образцы решений) или прикрепленном демо-файле.

Расчеты выполнены достаточно подробно. Все расчеты сопровождены формулами, пояснениями, выводами. Формулы и расчеты аккуратно набраны в microsoft equation.

Источник с заданием: Теория вероятностей и математическая статистика: метод. указ. и индивид. задания для студентов ИнЭО, обучающихся по направлению 13.03.02 «Электроэнергетика и электротехника» / сост. А.А. Михальчук; Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2017. – 137 с.

Объем работы 23 стр. TNR 14, интервал 1,15.

Если есть вопросы по работе, то пишите в ЛС.

Вам подходит эта работа?
Похожие работы
ТВиМС - Теория вероятностей и математическая статистика
Задача Задача
13 Ноя в 21:12
9
0 покупок
ТВиМС - Теория вероятностей и математическая статистика
Задача Задача
13 Ноя в 21:09
8
0 покупок
ТВиМС - Теория вероятностей и математическая статистика
Задача Задача
13 Ноя в 20:54
9
0 покупок
ТВиМС - Теория вероятностей и математическая статистика
Задача Задача
13 Ноя в 12:56
7
0 покупок
Другие работы автора
ТВиМС - Теория вероятностей и математическая статистика
Контрольная работа Контрольная
30 Июн в 11:02
191
0 покупок
Темы журнала
Показать ещё
Прямой эфир