Полная,свежая база вопросов. 35 вопросов с ответами. Сдано на 88 баллов из 100, оценка "Хорошо". Год сдачи - 2021.
После покупки, вы получите файл с ответами на вопросы которые указаны ниже:
1. Характерной особенностью позиционной игры является возможность ее представления в виде …
дерева игры
дифференциальной функции
квадратичной функции
2. По характеру взаимоотношений позиционная игра относится к … играм
коалиционным
бескоалиционным
кооперативным
антагонистическим
3. Решение в позиционных играх с полной информацией определяется…
только в седловой точке матрицы выигрышей
только в смешанных стратегиях матрицы выигрышей
и в седловой точке, и в смешанных стратегиях матрицы выигрышей
4. Пусть в матричной игре одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид ( 0.4, 0, 0.6). Какова размерность этой матрицы?
2*3
3*2
5. Решением позиционной игры с полной информацией являются …
оптимальные смешанные стратегии
оптимальные чистые стратегии с вероятностями, равными 1
оптимальные чистые стратегии с вероятностями, равными 0
6. Максимальное число седловых точек, которое может быть в игре размерности 2x3 (матрица может содержать любые числа), равно …
2
3
6
4
7. В основной теореме матричных игр Неймана утверждается, что в каждой матричной игре ситуация равновесия существует …
только в чистых стратегиях с вероятностями, равными 1
хотя бы в смешанных стратегиях
только в чистых стратегиях с вероятностями, равными 0
8. Пусть в матричной игре размерности 2x3 одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид ( 0.3, X, 0.5) – тогда число X равно …
0.4
0.2
0.7
9. Матричная игра – это частный случай биматричной игры, для которой всегда справедливо, что матрица А …
равна матрице В, взятой с обратным знаком
равна матрице В
не равна матрице В
10. В графическом методе решения игр 2×n непосредственно из графика находят …
оптимальные стратегии и цену игры обоих игроков
цену игры и оптимальную стратегию 2-го игрока
цену игры и оптимальную стратегию 1-го игрока
11. Если в матрице все строки одинаковы и имеют вид ( 4 5 0 1), то оптимальной для 2-го игрока является … стратегия
первая
вторая
третья
четвертая
12. В теореме Нэша утверждается, что всякая биматричная игра имеет хотя бы одну ситуацию равновесия в …
только в чистых стратегиях с вероятностями, равными 1
хотя бы в смешанных стратегиях
только в чистых стратегиях с вероятностями, равными 0
13. Если известно, что функция выигрыша 1-го игрока равна числу 1 в седловой точке, то значения выигрыша для 2-го игрока могут принимать …
любые значения
только положительные значения
значение, равное только 1
14. В антагонистической игре произвольной размерности выигрыш первого игрока – это …
число
множество
вектор, или упорядоченное множество
функция
15. Принцип доминирования позволяет удалять из матрицы за один шаг …
целиком строки или столбцы
только отдельные числа
только подматрицы меньших размеров
16. Матричная игра – это частный случай биматричной, при котором ...
матрицы А и В совпадают
из матрицы A можно получить матрицу В путем транспонирования
из матрицы А можно получить матрицу В путем деления на число 
из матрицы А можно получить матрицу В путем умножения на отрицательную единицу
17. Антагонистическая игра – это частный случай матричной игры, при котором обязательным требованием является то, что …
один из игроков имеет только бесконечное число стратегий
оба игрока имеют только бесконечно много стратегий
оба игрока имеют только одно и то же число стратегий
оба игрока имеют конечное число стратегий
18. Нормализация позиционной игры – это процесс представления ее в виде …
биматричной игры
матричной игры
дифференциальной игры
«игры с природой»
19. Если элемент матрицы aij соответствует седловой точке, то …
этот элемент строго меньше всех в строке
этот элемент строго второй по порядку в строке
возможно, что в строке есть элементы и больше, и меньше, чем этот элемент
этот элемент строго больше всех в строке
20. Биматричная игра может быть определена …
двумя матрицами только с положительными элементами
двумя произвольными матрицами
одной матрицей
двумя матрицами только с отрицательными элементами
21. В позиционных играх с неполной информацией информационное множество отражает осведомленность игрока о …
стратегиях противника
своих фактических стратегиях
вероятностях применения стратегий обоих игроков
всех своих стратегиях и противника, предшествующих текущему ходу
22. Кратковременное отклонение от оптимальной смешанной стратегии одного из игроков при условии, что другой сохраняет свой выбор, приводит к тому, что выигрыш отклонившегося игрока может
Только уменьшится
Только увеличится
23. Стратегия игрока в конечной позиционной игре есть функция, определенная на …
одном информационном множестве
нескольких информационных множествах
всех информационных множествах
24. Если из платежной матрицы исключить строки и столбцы, соответствующие дублирующим и доминируемым стратегиям, то цена матричной игры …
увеличится
не изменится
уменьшится
25. В матричной игре с нулевой суммой выигрыша элемент aij представляет собой …
выигрыш первого игрока при использовании им i-й стратегии, а вторым игроком – j-й стратегии
оптимальную стратегию первого игрока при использовании противником i-й или j-й стратегии
проигрыш первого игрока при использовании им j-й стратегии, а вторым игроком – i-й страте
26. Оптимальная смешанная стратегия смешивается только из тех чистых стратегий, вероятности которых …
равны только единице либо нулю
отличны от нуля
равны только нулю
27. Антагонистическая игра может быть задана ...
множеством стратегий обоих игроков и ценой игры
множеством стратегий обоих игроков и функцией выигрыша первого игрока
только множеством стратегий обоих игроков
функцией выигрыша обоих игроков
28. В равновесной ситуации биматричной игры выбор игрока полностью определяется элементами …
своей платежной матрицы
платежной матрицы другого игрока
своей платежной матрицы и платежной матрицы другого игрока
29. В биматричной игре размерности 3x3 ситуаций равновесия бывает …
не более 3 не менее 6
не более 9
не менее 4
30. Цена игры - это:
число
вектор
матрица.
31. В матричной игре, зная стратегии каждого игрока, можно найти цену игры:
да
нет
32. Для какой размерности игровой матрицы критерий Вальда обращается в критерий Лапласа?
1*5
5*1
33. В чем отличие критерия Вальда от остальных изученных критериев принятия решения:
Он минимизируется
Он максимизируется
При расчете не используются арифметические операции сложения и вычитания.
34. Пусть в матричной игре одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид ( 0.4, 0.1,0.1,0.4). Какова размерность этой матрицы?
2*4
6*1
иная размерность
35. Если известно, что функция выигрыша2-го игрока равна числу 3 в седловой точке, то значения этой функции могут принимать значения ...
любые
только положительные
только не более числа 2