1. Парная регрессия и корреляция
По территория региона приводятся данные за 199Х г. (табл. 1).
Требуется:
1. Построить линейное уравнение парной регрессии у на х.
2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3. Оценить статистическую значимость параметров регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.
4. Выполнить прогноз заработной платы у при прогнозном значении среднедушевого прожиточного минимума х, составляющем 107% от среднего уровня.
5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительного интервал.
6. На одном графике построить исходные данные и теоретическую прямую.
Номер региона Среднедушевой прожиточный мини-мум в день одного трудоспособного, руб.,
Среднедневная заработная плата, руб.,
1 74 122
2 81 134
3 90 136
4 79 125
5 89 120
6 87 127
7 77 125
8 93 148
9 70 122
10 93 157
11 87 144
12 121 165
2. Множественная регрессия и корреляция
По 20 предприятиям региона изучается зависимость выработки про-дукции на одного работника у (тыс.руб.) от ввода в действие новых основных фондов х1 (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих х2 (%).
Номер предприятия у х1 х2 Номер предприятия у х1 х2
1 6 3,5 10 11 10 6,3 21
2 6 3,6 12 12 11 6,4 22
3 7 3,9 15 13 11 7 23
4 7 4,1 17 14 12 7,5 25
5 7 4,2 18 15 12 7,9 28
6 8 4,5 19 16 13 8,2 30
7 8 5,3 19 17 13 8,4 31
8 9 5,3 20 18 14 8,6 31
9 9 5,6 20 19 14 9,5 35
10 10 6 21 20 15 10 36
Требуется:
1. Построить линейную модель множественной регрессии. Записать стандартизированное уравнение множественной регрессии. На основе стандартизированных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
2. Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.
3. Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.
4. С помощью F-критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации.
5. С помощью частных F-критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора х1 после х2 и фактора х2 после х1.
6. Составить уравнение линейной регрессии оставив лишь один значащий фактор.
3. Системы эконометрических уравнений
Даны системы эконометрических уравнений:
С = a1 + b12Y+b13T + e1
I = a2 + b21Y + b24K + e2
Y = C + I, где
С – потребление;
I – инвестиции;
Y – доход;
Т – налоги;
К – запас капитала;
t – текущий период;
t – 1 – предыдущий период.
Требуется
1. Применив необходимое и достаточное условие идентификации, оп-ределите, идентифицируемо ли каждое из уравнений модели.
2. Определите метод оценки параметров модели.
3. Запишите в общем виде приведенную форму модели.
4. Временные ряды
Имеются условные данные об объемах потребления электроэнергии (Yt) жителями региона за 16 кварталов.
Требуется:
1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.
2. Построить мультипликативную модель временного ряда.
3. Сделать прогноз на 2 квартала вперед.
Таблица 6
Данные об объемах потребления
t y(t) t y(t)
1 5,8 9 7,9
2 4,5 10 5,5
3 5,1 11 6,3
4 9,1 12 10,8
5 7,0 13 9,0
6 5,0 14 6,5
7 6,0 15 7,0
8 10,1 16 11,1
Содержание
1. Парная регрессия и корреляция 3
2. Множественная регрессия и корреляция 10
3. Системы эконометрических уравнений 18
4. Временные ряды 21
Список использованной литературы 28
Не подошли данные? Другой вариант? Не проблема! Напишите мне, оформите заказ и в течение 1-4 дней я выполню вашу работу.
В демо-файлах прикреплен пример оформления задач по эконометрике для общего представления о качестве приобретаемой работы.
Работа была выполнена в 18/19 учебном году, принята преподавателем без замечаний.