Задание 1. Классическое определение вероятности.Вариант№2.
1. Из шести карточек с буквами И К С Т У Э наугад одну за другой выбирают четыре карточки и располагают в ряд в порядке появления. Какова вероятность того, что получится слово «СТУК»?
Задание 2. Теоремы сложения и умножения вероятностей
1. Рабочий обслуживает три станка. Вероятность того, что в течение смены его внимания потребует первый станок равна 0.3, второй – 0.35, третий – 0.15. Найти вероятность того, что в течение смены внимания рабочего потребуют какие-либо два станка.
Задание 3. Формула полной вероятности. Формула Бейеса
1. Предприятие имеет три источника поставки комплектующих – фирмы А, В, С. на долю фирмы А приходится 50% общего объема поставок, В – 30% и С – 20%. Из практики известно, что 10% поставляемых фирмой А деталей – бракованные, В – 5% и С – 6%. Какова вероятность того, что наугад взятая деталь стандартная?
Задание 4. Повторные независимые испытания по схеме Бернулли
1. Вероятность получения хорошего результата при проведении маркетинговых исследований равна 0.7. Найти вероятность наивероятнейшего числа удачных исследований, если общее их количество равно 8.
Задание 5. Дискретные случайные величины и их числовые характеристики
Закон распределения дискретной случайной величины задан в виде таблицы.
Найти: 1) математическое ожидание ;
2) дисперсию ;
3) среднее квадратическое отклонение ;
4) начальные и центральные моменты первого, второго и третьего порядков.
Построить многоугольник распределения.
xi 10 20 30 40 50
pi 0.1 0.3 0.2 0.1 0.3