175 ответов на тесты по 9 темам по возрастанию значений (по верхней строке задания): ответы на вопросы 2 промежуточных тестов, 9 тестов электронного учебника и двух попыток Итогового теста (из этого ЧАСТИЧНО! складываются вопросы итогового теста). В основном в итоговый тест включены вопросы, которых НЕТ в промежуточных!
Также приведены формулы для решения заданий ПО ПЕРВЫМ ПЯТИ ТЕМАМ и описания по выполнению задач (в случае, если в итоговом тесте не окажется нужного ответа, но будет подобное задание с другими исходными данными). ФОРМУЛ и ПУТЕЙ РЕШЕНИЯ ПО 6, 7, 8 и 9 ТЕМАМ НЕТ - ТОЛЬКО ОТВЕТЫ !!!
ВНИМАНИЕ!!!
Помимо вопросов с ответами даны 15 вопросов из итоговых тестов, на которых ответа нет (выделены красным).
Также обращаю внимание на то, что в тестах очень много ошибок, поэтому даже если Вы ответите правильно (на вопросы, которых нет в данном файле), то ответ может быть засчитан, как неверным. По первым пяти темам я выложила формулы решений, по ним Вы можете доказать свою правоту. (Но поддержка ссылается на преподавателя, а преподаватель на контакт идет не охотно).
В данных ответах, например:
По 1 теме 2 вопроса решены верно, но засчитаны, как неверными (выделено коричневым) - если попадется, то доказывайте свою правоту!
По 3 теме 5 вопросов имеют неверные ответы (выделено красным), хотя ответы должны быть совсем другими - можете указать неверный ответ и он будет засчитан как правильный, а можете указать верный, а потом доказывать свою правоту!
По 4 теме 7 вопросов имеют неверные ответы (выделено красным), хотя правильные ответы другие - можете указать неверный ответ и он будет засчитан как правильный, а можете указать верный, а потом доказывать свою правоту!
Исходя из вышеизложенного есть три пути:
Тема 1.1. Алгоритм машинного обучения CART: математическая модель (22 вопроса, среди которых 2 правильных ответа засчитаны неверными)
С использованием библиотеки Pandas проводится предварительный анализ данных, содержащихся в файле data.csv. Посредством анализа данных необходимо определить значение A5 первого элемента списка, полученного путем фильтрации данных по условиям А2 > 1 и A3 < 2 и сортировки данных в порядке возрастания по значению A4. Ответ записать в виде числа без округлений через символ ".".
Тема 1.2. Алгоритм машинного обучения CART: особенности построения деревьев принятия решений (19 вопросов)
С использованием библиотеки Pandas проводится предварительный анализ данных, содержащихся в файле data.csv. Посредством анализа данных необходимо определить среднее значение параметра A5 для элементов списка, полученных путем отбора данных по условиям А2 > 0 и A3 < 1. Ответ требуется округлить с помощью функции round() до 2 знаков и записать через символ ".".
Тема 1.3. Возможности библиотеки scikit-learn Python для реализации алгоритма CART (26 вопросов)
С использованием библиотеки Pandas осуществляется загрузка обучающей выборки данных из файла data.csv. Последний столбец в загруженных данных отвечает за метку класса (столбец "C"), остальные столбцы отвечают за атрибуты (столбцы "A1", "A2", "A3"). Загруженные данные используются для построения дерева классификации. При этом применяется библиотека Sklearn, а построение дерева осуществляется по алгоритму CART. Требуется определить условие разбиения данных в корневом узле. Примеры записи ответов: "A3 <= -1.625" или "A2 <= -6.359".
Тема 1.4. Реализация алгоритма "случайный лес" методами библиотеки scikit-learn (20 вопросов)
С помощью библиотеки Sklearn на основе алгоритма CART производится построение дерева классификации с использованием стандартных параметров. Для этого с использованием библиотеки Pandas осуществляется загрузка обучающей выборки данных из файла data.csv, который содержит значения атрибутов ("A1", "A2", "A3", "A4", "A5", "A6") и метки классов ("C"). Требуется определить коэффициенты значимости каждого атрибута (с использованием feature_importances_) и в качестве ответа записать максимальное значение коэффициента. Ответ требуется округлить с помощью функции round() до 3 знаков и записать через символ ".".
Тема 2.1. Нейронная сеть как регрессионная модель данных (22 вопроса)
Требуется рассчитать выходной сигнал одного нейрона с функцией активации сигмоид для заданного вектора входных сигналов X. Значения входных весовых коэффициентов равны 0,5, смещение равно 0,5. Ответ требуется округлить с помощью функции round() до 2 знаков и записать через символ «.». Вектор входных сигналов X:
Далее формул нет!:
Тема 2.2. Обучение нейронной сети (17 вопросов, из них 2 без ответа)
Требуется рассчитать выходной сигнал полносвязной двухслойной нейронной сети прямого распространения. Количество нейронов в первом слое равно двум, количество нейронов во втором слое равно одному. Функция активации всех нейронов – сигмоид. Значения всех весовых коэффициентов равны 0,5, смещение всех нейронов равно 0,5. Ответ требуется округлить с помощью функции round() до 2 знаков и записать через символ «.». Вектор входных сигналов X:
Тема 2.3. Библиотека scikit-learn Python для нейронных сетей (26 вопросов, из них 7 без ответа)
Нейронная сеть состоит из единственного нейрона с сигнатурной функцией активации. Нейронная сеть инициализирована вектором весовых коэффициентов W и значением смещения b. После инициализации проводится обучение нейронной сети по методу дельта-правила с использованием выборки, состоящей из входных сигналов A1, A2, A3, и с ожидаемыми выходными значениями D1, D2, D3. Последовательность подачи входных сигналов: первая итерация обучения – A1, вторая итерация обучения – A2, третья итерация обучения – A3. Коэффициент скорости обучения n равен 0.2. Требуется рассчитать сумму весовых коэффициентов W и смещения b нейрона после третьей итерации обучения. Ответ требуется округлить с помощью функции round() до 2 знаков и записать через символ «.».
Тема 2.4. Кластеризация методом k-means (18 вопросов, из них 2 без ответа)
С помощью библиотеки sklearn на основе алгоритма k-means производится кластеризация точек на плоскости. Для этого с использованием библиотеки pandas осуществляется загрузка выборки данных из файла data.csv, который содержит значения координат точек (X, Y) исследуемых объектов. При кластеризации используются стандартные параметры алгоритма k-means, кроме n_clusters=2. Требуется определить координаты центра кластера, находящегося ближе к точке с координатами (0, 0). Значение каждой координаты округлить с помощью функции round() до 2 знаков. Примеры записи ответов: «(1.02, -2.04)» или «(-2.02, 2.04)».
Тема 2.5. Возможности библиотеки scikit-learn Python для реализации алгоритма k-means (20 вопросов, из них 4 без ответа)
С помощью библиотеки sklearn на основе алгоритма k-means производится кластеризация точек на плоскости. Для этого с использованием библиотеки pandas осуществляется загрузка выборки данных из файла data.csv, который содержит значения координат точек (X, Y) исследуемых объектов. При кластеризации используются стандартные параметры алгоритма k-means, кроме n_clusters=2. Требуется определить количество объектов в каждом кластере. При записи ответа значения приводить в порядке убывания. Примеры записи ответов: «20, 10» или «12, 11».