Задачи с векторами только на первый взгляд кажутся сложными, особенно если задача связана с трехмерным пространством. Но не стоит пугаться ведь если разобраться по-лучше в данной тематике задачи решаются в два счета. Так например в данной статье мы разберем тематику определения координат вектора, исходными данными для которого известны координаты начальной и конечной точки.
Для того чтобы определить координаты некоторого вектора , зная координаты начала и конца, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки.
Задача 1
Рассмотрим первый вариант задачи. Вектор задан в двухмерном пространстве {x,y}. Тогда у каждой точки вектора существует две координаты, соответственно относящиеся к оси ОХ и ОУ. Формула для определения координаты вектора в таком случае принимает вид:
Рассмотрим на примере: На некоторой плоскости заданы точки M и N, координаты которых равны соответственно (1,2) и (3,5). Необходимо найти координаты вектора
Решение
Возьмем некоторую плоскость и отметим точки и . Затем соединим исходные точки и рассчитаем координаты полученного вектора.
Вот так вот мы получили простое решение искомой задачи. Вариация таких задач может сочетать в себе нахождение не только координат вектора, но и отдельных координат исходных точек вектора.
Но у меня задача может быть не только одно- или двухмерное, но также трехмерное или как мы будем называть их n-мерное. Формула тогда в таком случае немного изменит вид, но смысл не меняется.
Задача 2
Сформулируем формулу для определения координат вектора расположенного в n-мерном пространстве.
Такое пространство подразумевает координаты точек в виде и формула примет вид:
Рассмотрим задачу на примере 5-мерного пространства. Необходимо найти координаты точки N вектора
, если известны координаты точки
Решение
Не стоит пугаться при виде слов 5-мерное пространство, т.к. рисовать данную систему координат не обязательно. Стоит лишь правильно понимать и применять формулу которую мы рассмотрели выше. Перепишем ее еще раз для нашего случая.
Тогда рассмотрим систему:
и решив данную систему, получим
Тогда получим ответ на задачу
На Студворк вы можете заказать статью по математике онлайн у профильных экспертов!
Комментарии