Вариант 6
(для студентов, номера личных дел которых
оканчиваются цифрой 6)
1. Вероятности того, что каждый из трех кассиров занят обслуживанием покупателей, равны соответственно 0,7; 0,8; 0,9. Найти вероятность того, что в данный момент заняты обслуживанием покупателей:
а) все кассиры;
б) только один кассир;
в) хотя бы один кассир.
2. На заочном отделении вуза 80% всех студентов работают по специальности. Какова вероятность того, что из пяти отобранных случайным образом студентов по специальности работают:
а) два студента;
б) хотя бы один студент?
3. У торгового агента имеется пять адресов потенциальных покупателей, к которым он обращается с предложением приобрести реализуемый его фирмой товар. Вероятность согласия потенциальных покупателей оценивается соответственно как 0,5; 0,4; 0,4; 0,3; 0,25. Агент обращается к ним в указанном порядке до тех пор, пока кто-нибудь не согласится приобрести товар. Составить закон распределения случайной величины – числа покупателей, к которым придется обратиться торговому агенту. Найти математическое ожидание и дисперсию этой величины.
4. Имеются выборочные данные о распределении вкладчиков по размеру вклада в Сбербанке города.
Найти:
а) вероятность того, что средний размер вклада в Сбербанке отличается от среднего размера вклада в выборке не более чем на 5 тыс. руб. (по абсолютной величине);
б) границы, в которых с вероятностью 0,95 заключена доля вкладов, размер которых менее 60 тыс. руб.;
в) объем повторной выборки, при которой те же границы для доли вкладов (см. п. б) можно гарантировать с вероятностью 0,9876; дать ответ на тот же вопрос, если никаких предварительных данных о рассматриваемой доле нет.
5. По данным задачи 4, используя χ2 - критерий Пирсона, на уровне значимости α= 0,05 проверить гипотезу о том, что случайная величина Х – размер вклада в Сбербанке – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
____
+ важные комментарии в конце файла