Контрольная по мат статистике и теории вероятности
3 вариант
Полное задание в демо файле
Вариант 3
(для студентов, номера личных дел которых
оканчиваются цифрой 3)
1. Для сигнализации об аварии установлены три независимо работающих устройства. Вероятность того, что при аварии сработает первое устройство, равна 0,9, второе – 0,95, третье – 0,85. Найти вероятность того, что при аварии сработает:
а) только одно устройство;
б) два устройства;
в) хотя бы одно устройство.
2. В каждом испытании некоторое событие А происходит с вероятностью р = 0,5. Произведено 1600 независимых испытаний. Найти границы для частости, симметричные относительно р, которые можно гарантировать с вероятностью 0,95.
3. На двух станках получают детали одинаковой номенклатуры. Случайные величины X и Y – число бракованных деталей в партиях деталей за смену, произведенных на каждом из станков, – характеризуются следующими законами распределения:
Составить закон распределения случайной величины Z – общего числа бракованных деталей в объединенной партии деталей, произведенных на двух станках. Найти ее математическое ожидание, дисперсию и функцию распределения.
4. В некотором городе по схеме собственно-случайной бесповторной выборки было обследовано 80 магазинов розничной торговли из 2500 с целью изучения объема розничного товарооборота. Получены следующие данные.
Найти:
а) вероятность того, что средний объем розничного товарооборота во всех магазинах города отличается от среднего объема розничного товарооборота, полученного в выборке, не более чем на 4 у. е. (по абсолютной величине);
б) границы, в которых с вероятностью 0,98 заключена доля магазинов с объемом розничного товарооборота от 60 до 90 у. е.;
в) объем бесповторной выборки, при котором те же границы для среднего объема розничного товарооборота (см. п. а) можно гарантировать с вероятностью 0,95.
5. По данным задачи 4, используя χ2 - критерий Пирсона, на уровне значимости α = 0,05 проверить гипотезу о том, что случайная величина Х – объем розничного товарооборота – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
____
+ важные комментарии в конце файла