Цель: Научиться прогнозировать динамику временного ряда
Задание: Ознакомиться возможностями аналитического пакета Deductor выполнив задания. В конце работы сохранить проект.
Преобразование данных к скользящему окну
Линейная регрессия необходима тогда, когда предполагается, что зависимость между входными факторами и результатом линейная. Достоинством ее можно назвать быстроту обработки входных данных и простоту интерпретации полученных результатов.
Рассмотрим применение линейной регрессии на примере данных по продажам, находящихся в файле «Trade.txt».
Когда требуется прогнозировать временной ряд, тем более, если налицо его периодичность (сезонность), то лучшего результата можно добиться, учитывая значения факторов не только в данных момент времени, но и, например, за аналогичный период прошлого года. Такую возможность можно получить после трансформации данных к скользящему окну. То есть, например, при сезонности продаж с периодом 12 месяцев, для прогнозирования количества продаж на месяц вперед можно в качестве входного фактора указать не только значение количества продаж за предыдущий месяц, но и за 12 месяцев назад.
Обработка создает новые столбцы путем сдвига данных исходного столбца вниз и вверх (глубина погружения и горизонт прогноза).