Ответ на вопрос
Для начала записываем систему уравнений в матричной форме:
[3 2 1 | 5]
[2 3 1 | 1]
[2 1 3 | 11]Применяем метод Гаусса:
1) Вычитаем из второй строки первую, умноженную на 2:
[3 2 1 | 5]
[0 -1 1 | -9]
[2 1 3 | 11]2) Вычитаем из третьей строки первую, умноженную на 2:
[3 2 1 | 5]
[0 -1 1 | -9]
[0 -3 1 | 1]3) Домножаем вторую строку на -1:
[3 2 1 | 5]
[0 1 -1 | 9]
[0 -3 1 | 1]4) Вычитаем из третьей строки вторую, умноженную на 3:
[3 2 1 | 5]
[0 1 -1 | 9]
[0 0 4 | -26]5) Делим третью строку на 4:
[3 2 1 | 5]
[0 1 -1 | 9]
[0 0 1 | -6.5]6) Подставляем найденные значения обратно в систему и находим значения x, y, z:
z = -6.5
y = 9 + z = 2.5
x = (5 - 2y - z) / 3 = 1Ответ: x = 1, y = 2.5, z = -6.5Для метода Гаусса записываем систему уравнений в матрицу коэффициентов и столбец свободных членов:
[1 2 3 4 | 5]
[2 1 2 3 | 1]
[3 2 1 2 | 1]
[4 3 2 1 | -5]Применяем метод Гаусса:
1) Вычитаем из второй строки первую, умноженную на 2:
[1 2 3 4 | 5]
[0 -3 -4 -5 | -9]
[3 2 1 2 | 1]
[4 3 2 1 | -5]2) Вычитаем из третьей строки первую, умноженную на 3:
[1 2 3 4 | 5]
[0 -3 -4 -5 | -9]
[0 -4 -8 -10 | -14]
[4 3 2 1 | -5]3) Вычитаем из четвертой строки первую, умноженную на 4:
[1 2 3 4 | 5]
[0 -3 -4 -5 | -9]
[0 -4 -8 -10 | -14]
[0 -5 -10 -15 | -25]4) Приводим матрицу к треугольному виду и решаем обратным ходом:
[1 2 3 4 | 5]
[0 -3 -4 -5 | -9]
[0 0 -4 -10 | -10]
[0 0 0 -5 | -5]5) Находим значения переменных:
x4 = 1
x3 = 2
x2 = 1
x1 = 1Ответ: x1 = 1, x2 = 1, x3 = 2, x4 = 1
Еще