НОД и НОК двух чисел

Содержание

  1. 1. Онлайн калькулятор НОД и НОК двух чисел
  2. 2. Наибольший общий делитель (НОД)
    1. 2.1. Как найти наибольший общий делитель (НОД)
  3. 3. Наименьшее общее кратное (НОК)
    1. 3.1. Как найти наименьшее общее кратное (НОК)
  4. 4. Свойства НОД и НОК

Онлайн калькулятор НОД и НОК двух чисел

Наибольший общий делитель (НОД)

Определение НОД

НОД двух или более целых чисел — это наибольшее целое число, которое является делителем каждого из этих чисел.

Если натуральное число a делится на натуральное число bb, то bb называют делителем числа aa, а число aa называют кратным числа bb. aa и bb являются натуральными числами. Число gg называют общим делителем и для aa и для bb. Множество общих делителей чисел aa и bb конечно, так как ни один из этих делителей не может быть больше, чем aa. Значит, среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел aa и bb и для его обозначения используют записи: НОД (a;b)(a;b) или D(a;b)(a;b)

Пример
Наибольший общий делитель (НОД) чисел 1818 и 2424 — это 66.

Как найти наибольший общий делитель (НОД)

Существует несколько способов нахождения наибольшего общего делителя (НОД) двух или более целых чисел:

  • Алгоритм Евклида: НОД(a,b)=(a, b) = НОД (b,a(b, a mod b)b), где «mod» - это операция взятия остатка от деления большего числа на меньшее. Этот алгоритм можно продолжать до тех пор, пока одно из чисел не станет равно нулю. В этом случае НОД равен ненулевому числу.

Пример
НОД(18,24)=НОД(24,18)=НОД(18,6)=НОД(6,0)=6НОД(18, 24) = НОД(24, 18) = НОД(18, 6) = НОД(6, 0) = 6

  • Разложение на простые множители: Найти все простые множители каждого из чисел и их степени. НОД будет равен произведению всех общих простых множителей в минимальной степени.

Пример
НОД(60,84)=2231=12(60, 84) = 2^{2} \cdot 3^{1} = 12, так как общие простые множители 2- 2 и 33, их минимальные степени 2- 2 и 11 соответственно.

  • Таблица делителей: Составить таблицы всех делителей каждого числа и найти наибольшее общее число, которое является делителем обоих чисел. Этот метод не рекомендуется для больших чисел, так как он требует много времени и усилий.

Наименьшее общее кратное (НОК)

Определение НОК

НОК двух или более целых чисел — это наименьшее число, которое делится на каждое из этих чисел без остатка.

Общими кратными чисел называются числа которые делятся на исходные без остатка. Например для чисел 2525 и 5050 общими кратными будут числа 50,100,150,20050,100,150,200 и т.д Наименьшее из общих кратных будет называться НОК и обозначается НОК(a;b)(a;b) или K(a;b).(a;b).

Пример
Наименьшее общее кратное чисел 88 и 1212 – это 2424. Т.е. НОК (8,12)=24(8, 12) = 24.

Как найти наименьшее общее кратное (НОК)

Чтобы найти НОК двух чисел, необходимо:

  1. Разложить числа на простые множители;
  2. Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого;
  3. Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наименьшим общим кратным.

Пример
Рассмотрим два числа: 88 и 1212. Найдем их НОКНОК:

  • Разложим 88 и 1212 на простые множители: 8=23,12=2238 = 2^3, 12 = 2^2 \cdot 3.
  • Выпишем все простые множители: 2332^3 \cdot 3.
  • Для каждого простого множителя выберем наибольшую кратность: 232^3 и 33.
  • Умножим выбранные простые множители между собой: 233=242^3 \cdot 3 = 24.

Таким образом, НОК чисел 88 и 1212 равен 2424.

Свойства НОД и НОК

  • Любое общее кратное чисел aa и bb делится на K(a;b)(a;b);
  • Если aba\vdots b , то К(a;b)=a(a;b)=a;
  • Если К(a;b)=k(a;b)=k и mm-натуральное число, то К(am;bm)=km(am;bm)=km. Если dd-общий делитель для aa и bb,то К(ad;bd\frac{a}{d};\frac{b}{d})= kd\ \frac{k}{d}
  • Если aca\vdots c и bcb\vdots c ,то abc\frac{ab}{c} - общее кратное чисел aa и bb;
  • Для любых натуральных чисел aa и bb выполняется равенство D(a;b)К(a;b)=abD(a;b)\cdot К(a;b)=ab;
  • Любой общий делитель чисел aa и bb является делителем числа D(a;b)D(a;b).

Не получается самостоятельно разобраться с темой? Заказать написание статьи по математике!

Комментарии

Нет комментариев

Предыдущая статья

Идеальный квадрат

Следующая статья

Сумма чисел от 1 до N
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Прямой эфир