ВОПРОСЫ ПО ДАННОМУ ПРЕДМЕТУ (РОСДИСТАНТ). ВОПРОСЫ ТОЛЬКО ИЗ ПРОМЕЖУТОЧНЫХ ТЕСТОВ!
ВОПРОСЫ ТОЛЬКО ТЕ, ЧТО МНЕ ДОСТАЛИСЬ ПРИ ПРОХОЖДЕНИИ (НИЖЕ ПОЛНЫЙ СПИСОК ВОПРОСОВ, ЧТО БУДУТ В ФАЙЛЕ!). ЕСЛИ ВОПРОСА НЕТ В РАЗДЕЛЕ "ОГЛАВЛЕНИЕ" (НИЖЕ), ЗНАЧИТ В ФАЙЛЕ ЕГО ТОЖЕ НЕ БУДЕТ. ПЕРЕД ПОКУПКОЙ, ОБЯЗАТЕЛЬНО УЧИТЫВАЙТЕ ЭТО, ПОЖАЛУЙСТА!!!
Если возникнут вопросы по тестам или предметам, пишите в личные сообщения, в любое время.
Определить поток вектора напряженности электрического поля ФE, созданного заряженной полусферой, через сферическую поверхность радиусом R (см. рис.), если заряд полусферы q = 8,85 10–9 Кл.
Тонкое кольцо несет распределенный заряд q = 0,2 мкКл. Определить напряженность электрического поля E, созданного распределенным зарядом в точке A, которая равноудалена от всех точек кольца на расстояние r = 20 см. Радиус кольца R = 10 см.
Электрон с энергией Eк = 400 эв движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R = 10 см. Определить минимальное расстояние a, на которое приблизится электрон к поверхности сферы, если заряд ее составляет q = –10 нКл.
Найти поток вектора напряженности электрического поля ФE, созданного двумя точечными зарядами +q и –q, через замкнутую поверхность в виде куба, указанного на рисунке.
Две параллельные плоскости заряжены равномерно разноименно с поверхностной плотностью = 8,85 нКл/м2. Найти напряженность электрического поля в точке В, если расстояния r одинаковы.
Две трети тонкого кольца радиусом R = 10 см несут равномерно распределенный с линейной плотностью = 0,2 мкКл/м заряд. Определить напряженность электрического поля E, созданного распределенным зарядом в точке O, совпадающей с центром кольца.
Электрическое поле создано бесконечной заряженной прямой нитью с равномерно распределенным зарядом = 10 нКл/м. Определить кинетическую энергию Ek2 электрона в точке 2, если в точке 1 его кинетическая энергия Ek1 = 200 эВ (рис.).
По тонкому кольцу радиусом R = 20 см равномерно распределен с линейной плотностью = 0,2 мкКл/м заряд. Определить напряженность электрического поля E, созданного зарядом в точке A, находящейся на оси кольца на расстоянии h = 2R от его центра.
По тонкому полукольцу радиусом R = 10 см равномерно распределен заряд с линейной плотностью = 1 мкКл/м. Определить напряженность электрического поля E, созданного этим зарядом в точке O, совпадающей с центром кольца.
Тонкий бесконечный стержень, ограниченный с одной стороны, равномерно заряжен с линейной плотностью = 0,5 мкКл/м. Определить напряженность электрического поля E, созданного распределенным зарядом в точке M, лежащей на оси стержня на расстоянии а = 20 см от его начала.
Пространство между пластинами плоского конденсатора заполнено диэлектриком (фарфор), объем которого равен = 100 см3. Поверхностная плотность заряда на пластинах конденсатора равна = 8,85 нКл/м2. Определить работу A, которую нужно совершить, чтобы удалить диэлектрик из конденсатора. Трением диэлектрика и пластин пренебречь.
Плоский конденсатор состоит из двух круглых пластин радиусом R = 10 см каждая. Расстояние между пластинами d = 2 мм. Конденсатор соединен с источником напряжения = 80 В. Определить заряд q и напряженность поля E конденсатора, если диэлектрик – воздух.
Конденсаторы емкостью С1 = 2 мкФ, С2 = 5 мкФ и С3 = 10 мкФ соединены последовательно и находятся под напряжением = 850 В. Определить заряд на каждом из конденсаторов.
Расстояние между пластинами плоского конденсатора равно d = 2 см, разность потенциалов = 6 кВ. Заряд каждой пластины равен q = 10 нКл. Определить энергию W поля конденсатора.
Плоский воздушный конденсатор состоит из двух круглых пластин радиусом r1 = r2 = 10 см. Расстояние между пластинами d1 = 1 см. Конденсатор зарядили до разности потенциалов = 1,2 кВ и отключили от источника тока. Какую работу A нужно совершить, чтобы, удаляя пластины друг от друга, увеличить расстояние между ними до 2 = 3,5 см?
Плоский воздушный конденсатор электроемкостью C = 1,11 нФ заряжен до разности потенциалов = 300 В. После отключения от источника тока расстояние между пластинами конденсатора увеличили в 5 раз. Определить: а) разность потенциалов на обкладках конденсатора; б) работу A внешних сил.
Плоский конденсатор с площадью пластин S = 200 см2 каждая заряжен до разности потенциалов 2 кВ. Расстояние между пластинами d = 2 см. Диэлектрик – стекло. Определить энергию поля конденсатора W и плотность энергии поля
Электрон, прошедший в плоском конденсаторе путь от одной пластины до другой, имеет скорость 105 м/с. Расстояние между пластинами d = 8 мм. Найти разность потенциалов между пластинами плоского конденсатора.
Конденсатор емкостью С1 = 10 мкФ заряжен до напряжения = 10 В. Определить, чему равен заряд q на обкладках этого конденсатора после того, как параллельно к нему был подключен другой, незаряженный конденсатор электроемкостью С2 = 20 мкФ.
Конденсаторы емкостью С1 = 5 мкФ и С2 = 10 мкФ заряжены до напряжений 1 = 60 В и 2 = 100 В соответственно. Определить напряжение на обкладках конденсаторов после их соединения обкладками, имеющими одноименные заряды.
ЭДС батареи = 24 В. Максимальная сила тока, которую может дать батарея, 10 А. Определить max мощность Pmax, которая может выделиться во внешней электрической цепи.
Сила тока в проводнике сопротивлением R = 100 Ом равномерно убывает от 10 A до 0 A за время t = 30 сек. Определить количество теплоты Q, которое выделится за это время в проводнике.
В сеть с напряжением = 100 В подключили последовательно катушку с сопротивлением R1 = 2 Ом и вольтметр. Вольтметр показывает напряжение 1 = 80 В. Когда катушку заменили, вольтметр показал напряжение U2 = 60 В. Определить сопротивление R2 другой катушки.
ЭДС батареи = 80 В, внутреннее сопротивление r = 5 Ом. Внешняя электрическая цепь потребляет мощность = 100 Вт. Определить силу тока в цепи, напряжение, под которым находится внешняя цепь.
Катушка и амперметр соединены последовательно и подключены к источнику тока. К клеммам катушки присоединен вольтметр с сопротивлением r = 4 кOм. Амперметр показывает силу тока 0,3 А, вольтметр – напряжение = 120 В. Определить сопротивление катушки R.
В круг включены последовательно медная и стальная проволоки. Их длины и площади сечений одинаковы. Найти отношение количеств теплоты, которое выделяется в проволоках при прохождении тока.
Определить плотность тока j в железном проводнике длиной 10 м, если он находится под напряжением = 6 В.
Две группы из трех последовательно соединенных элементов соединены параллельно. ЭДС каждого элемента равна = 1,2 В, внутреннее сопротивление r = 0,2 Ом. Батарея замкнута на внешнее сопротивление R = 1,5 Ом. Найти силу тока во внешнем круге.
Две электрические лампочки с сопротивлениями R1 = 360 Ом, R2 = 240 Ом включены в цепь параллельно. Найти отношение мощностей, которые они потребляют.
Две батареи аккумуляторов = 10 В, r1 = 1 Ом; 2 =8, r2 = 2 Ом и реостат R = 6 Ом соединены, как показано на рисунке. Найти силы тока 1 и 2 в батареях.
При включении электромотора в сеть с напряжением 220 В он потребляет ток = 5 А. Определить мощность P, используемую мотором и его КПД, если сопротивление обмотки мотора равно R = 6 Ом.
В медном проводнике объемом = 6 см3 при прохождении по нему постоянного тока за время t = 1 мин выделилось количество теплоты Q = 216 Дж. Определить напряженность E электрического поля в проводнике.
По проводнику сопротивлением R = 3 Ом течет ток, сила которого возрастает. Количество теплоты, выделившееся в проводнике за время t = 8 с, равно Q = 200 Дж. Определить заряд q, проходящий за это время вдоль проводника. В начальный момент времени сила тока = 0.
ЭДС батареи составляет = 12 В. При силе тока = 4 А, КПД батареи равен = 0,6. Определить внутреннее сопротивление батареи
При внешнем сопротивлении R1 = 8 Ом сила тока в электрической цепи 0,8 А, при сопротивлении R2 = 15 Ом сила тока 0,5 А. Определить – силу тока короткого замыкания источника ЭДС.
По тонкому кольцу радиусом R = 20 см течет ток 100 А. Определить магнитную индукцию В на оси кольца в точке А, как это показано на рисунке, если угол = п/3 .
По двум скрещенным под прямым углом бесконечно длинным проводам, как показано на рисунке, проходят токи ( 100 А). Определить магнитную индукцию В в точке А, если расстояние R = 10 см.
По бесконечно длинному проводу, согнутому так, как это показано на рисунке, проходит ток 200 А. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см.
Бесконечно длинный провод с током = 100 А изогнут так, как это показано на рисунке. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см.
Бесконечно длинный провод с током = 50 А изогнут так, как это показано на рисунке. Определить магнитную индукцию В в точке А, лежащей на биссектрисе прямого угла на расстоянии d = 10 см от его вершины.
Определить магнитную индукцию поля, создаваемого отрезком бесконечно длинного провода в точке, равноудаленной от концов отрезка и находящейся на расстоянии R = 4 см от его середины. Длина отрезка проволоки 20 см, сила тока в проводе 10 А.
По бесконечно длинному проводу, согнутому так, как это показано на рисунке, проходит ток 200 А. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см.
Плоский контур, площадь которого равна S = 300 см2, находится в однородном магнитном поле с индукцией В = 0,01 Тл. Плоскость контура перпендикулярна к линиям индукции. В контуре поддерживается постоянный ток силой 10 А. Определить работу внешних сил, нужную для перемещения контура с током в область пространства, магнитное поле в которой отсутствует.
Ион, попав в магнитное поле (В = 0,01 Тл), стал двигаться по кругу. Определить кинетическую энергию этой частицы, если магнитный момент эквивалентного кругового тока равен рm = 1,6 Ч 10–14 AЧм2.
Круговой контур из проволоки радиусом r = 5 см и током 1 А находится в магнитном поле, причем плоскость контура перпендикулярна направлению поля. Напряженность поля равна H = 10 кА/м. Определить работу, которую необходимо выполнить, чтобы повернуть контур на угол вокруг оси, совпадающей с диаметром контура.
По тонкому проводящему полукольцу радиусом R = 50 см течет ток 1 А. Перпендикулярно плоскости полукольца возбуждено однородное магнитное поле с индукцией В = 0,01 Тл. Определить силу, растягивающую полукольцо. Действие магнитного поля на провода, подводящие ток к полукольцу, и взаимодействие отдельных элементов полукольца не учитывать.
В однородном магнитном поле с индукцией В = 0,2 Тл находится прямой проводник длиной 15 см, по которому проходит ток 5 А. На проводник действует сила F = 0,13 Н. Определить угол между направлениями тока и вектором магнитной индукции.
Магнитное (В = 2 мТл) и электрическое (Е = 1,6 кВ/м) поля направлены одинаково. Перпендикулярно их векторам и влетает электрон со скоростью = 0,8 мм/с. Определить ускорение электрона в момент, когда он влетел в эти поля.
Определить индукцию магнитного поля B в центре проволочной квадратной рамки со стороной а = 15 см, если по рамке проходит ток 5 А.
Электрон, имеющий скорость = 1 мм/с, влетает в однородное магнитное поле под углом а = 600 с направлением поля и начинает двигаться по винтовой линии. Напряженность магнитного поля Н = 1,5 кА/м. Определить: 1) шаг винтовой линии; 2) ее радиус.
По двум параллельным прямым проводам длиной 2,5 м каждый, находящимся на расстоянии d = 20 см друг от друга, проходят одинаковые токи силой = 1 кА. Определить силу взаимодействия токов.
По тонкому проводу, согнутому в виде прямоугольника, проходит ток силой 60 А. Длины сторон прямоугольника равны а = 30 см и b = 40 см. Определить магнитную индукцию В в точке пересечения диагоналей прямоугольника.
В магнитном поле, меняющемся по закону B =
(B0 = 0,1 Тл, = 4 с–1), размещена квадратная рамка со стороной а = 50 см, причем нормаль к рамке образует с направлением поля угол 450. Определить ЭДС индукции, возникающей в рамке, в момент времени t = 5 с.
Определить магнитный поток через поперечное сечение катушки (без сердечника), если на каждом сантиметре длины N = 8 витков. Радиус соленоида r = 2 см, а сила тока в нем 2 А.
Соленоид с площадью сечения S = 10 см2 имеет N = 103 витков. При силе тока 5 А магнитная индукция поля внутри соленоида равна В = 0,05 Тл. Определить индуктивность L соленоида.
Рамка площадью S = 200 см2 равномерно вращается с частотой = 10 с–1 относительно оси, лежащей в плоскости рамки, и перпендикулярна линиям индукции однородного магнитного поля (В = 0,2 Тл). Найдите среднее значение ЭДС индукции <> за время, в течение которого магнитный поток, пронизывающий рамку, изменится от нуля до максимального значения.
Магнитная индукция поля между полюсами двухполюсного генератора равна В = 0,8 Тл. Ротор имеет N = 100 витков площадью S = 400 см2. Определить частоту вращения якоря, если максимальное значение ЭДС индукции = 200 В.
На картонный каркас длиной 50 см и площадью сечения, равной S = 4 см2, намотан в один слой провод диаметром d = 0,2 мм так, что витки плотно прилегают друг к другу (толщиной изоляции пренебречь). Вычислить индуктивность L полученного соленоида.
Магнитная индукция поля между полюсами двухполюсного генератора равна В = 1 Тл. Ротор имеет N = 140 витков, площадь каждого витка S = 500 см2. Определить частоту вращения якоря, если максимальное значение ЭДС индукции равно .
В однородное магнитное поле с индукцией В = 0,3 Тл помещена прямоугольная рамка с подвижной стороной, длина которой 15 см. Определить ЭДС индукции, возникающей в рамке, если ее подвижная сторона перемещается перпендикулярно к линиям магнитной индукции со скоростью = 10 м/с.
На один сердечник намотаны две катушки. Индуктивности их равны соответственно L1 = 0,5 Гн и L2 = 0,7 Гн. Чему равна их взаимная индуктивность в отсутствие рассеяния магнитного потока?
В проводное кольцо, присоединенное к баллистическому гальванометру, внесли прямой магнит. При этом по электрическому кругу прошел заряд Q = 50 мкКл. Определить изменение магнитного потока Ф через кольцо, если сопротивление гальванометра R = 10 Ом.
Две одинаковых небольших катушки расположены так, что их оси лежат на одной прямой (см. рисунок). Расстояние между катушками 10 см существенно превышает их линейные размеры. Число витков N = 315, площадь витков S = 10 см2. Чему равен коэффициент взаимной индукции катушек L1,2?
Соленоид длинной 100 мм с числом витков N = 100 и сечением S = 1 мм2 подключен к батарее с ЭДС = 2 В через некоторое сопротивление R = 2 Ом. В соленоид вставлен сердечник из сверхпроводника той же длины, но с сечением 5/2. Сердечник быстро вынимают из соленоида за время t = 0,05 с. Определить силу тока в цепи.
Источник тока замкнули на катушку сопротивлением R = 20 Ом. Через время t = 0,1 с сила тока в катушке достигла предельного значения = 0,95A. Определить индуктивность катушки L.
Определите коэффициент взаимной индукции L12 обмоток трансформатора с числом витков N1 = 1000 и N2 = 2000 и магнитной проницаемостью сердечника = 3. Сердечник является замкнутым и односвязным, с длиной 100 мм и площадью поперечного сечения S = 10 мм2.
В катушке длиной 0,5 м, диаметром d = 5 см и числом витков N = 1500 ток равномерно увеличивается на в секунду. На катушку надето кольцо из медной проволоки (17 нОм м) площадью сечения S0 = 3 мм2. Определить силу тока в кольце.
Электрическая цепь состоит из катушки индуктивности L = 0,1 Гн и источника тока. Источник тока отключили, не разрывая электрическую цепь. Время, за которое сила тока уменьшилась до 0,001 от первоначального значения, равно t = 0,07 с. Определить сопротивление катушки.
В некоторой точке изотропного диэлектрика с проницаемостью = 3 электрическое смещение имеет значение D = 15 мкКл/м2. Чему равна поляризованность в этой точке?
Рассчитать напряженность поля внутри плоской пластины диэлектрика, помещённой в однородное электростатическое поле (D = D0 ) с диэлектрической проницаемостью = 3 и напряжённостью E0 = 15 В/м.
Два одинаковых плоских воздушных конденсатора соединены последовательно и подключены к источнику ЭДС. Внутрь одного из них вносят диэлектрик с диэлектрической проницаемостью = 2, заполняющий все пространство между обкладками. Во сколько раз изменится напряженность электрического поля в этом конденсаторе?
В однородное электрическое поле с напряжённостью Е0 = 100 В/м помещена бесконечная плоскопараллельная пластина из однородного и изотропного диэлектрика с проницаемостью = 2. Пластина расположена перпендикулярно к Е0. Определить: 1) электрическое смещение D внутри пластины; 2) поляризованность диэлектрика Р.
Между обкладками плоского конденсатора, заряженного до разности потенциалов = 1,5 кВ, зажата парафиновая пластинка ( = 2) толщиной d = 5 мм. Определить поверхностную плотность связанных зарядов на парафине.
Между пластинами плоского конденсатора, заряженного до разности потенциалов = 600 В, находятся два слоя диэлектриков: стекло, толщиной d1 = 7 мм, и эбонит, толщиной d2 = 3 мм. Найти электрическое смещение через напряженность поля в каждом слое.
На железном сердечнике в виде тора со средним диаметром d = 70 мм намотана обмотка с общим числом витков N = 600. В сердечнике сделана узкая поперечная прорезь шириной b = 1,5 мм. При силе тока через обмотку 4 А магнитная индукция в прорези B0 = 1,5 Тл. Пренебрегая рассеянием поля на краях прорези, определите магнитную проницаемость железа для данных условий.
Электрон в атоме водорода движется по круговой орбите. Определить отношение магнитного момента эквивалентного кругового тока к моменту импульса L орбитального движения электрона.
В однородное магнитное поле с индукцией В0 = 25 Тл помещена бесконечная плоскопараллельная пластина из однородного изотропного магнетика с проницаемостью = 5. Пластина расположена перпендикулярно к линиям индукции. Определить напряженность магнитного поля Н в магнетике.
Индукция магнитного поля в железном стержне B = 1,2 Тл. Определить для него намагниченность, если зависимость B от H для данного сорта ферромагнетика представлена на рисунке.
Напряженность магнитного поля в меди равна Н = 1 МА/м. Определить намагниченность меди и магнитную индукцию В, если известно, что удельная магнитная восприимчивость = – 1,1 Ч 10–9 м3/кг.
Соленоид, находящийся в диамагнитной среде, имеет длину 30 см, площадь поперечного сечения S = 15 см2 и число витков N = 500. Индуктивность соленоида L = 1,5 мГн, а сила тока, протекающего по нему, 1 А. Определить магнитную индукцию внутри соленоида и намагниченность внутри соленоида.
Длинный однородный цилиндр изготовлен из материала с "замороженной" однородной намагниченностью, вектор которой параллелен его оси. Индукция в точке А оказалась равной ВА = 0,1 Тл (см. рис.). Найти индукцию В вблизи торца короткого цилиндра, изготовленного из того же материала, если h/D = 5 Ч 10–2.
Обмотка тороида с железным сердечником имеет N = 151 виток. Средний радиус тороида составляет = 3 см. Сила тока через обмотку равна 1 А. Определить для этих условий: 1) индукцию магнитного поля внутри тороида; 2) намагниченность сердечника. Использовать график зависимости B от Н, приведенный на рисунке.
При разрядке плоского конденсатора, площадь обкладок которого S = 10 см2, заполненного диэлектриком с = 103, в подводящих проводах течет ток 1 мкА. Определить скорость изменения напряженности электрического поля в конденсаторе.
Длинный соленоид (длина 50 мм, радиус r = 20 мм, число витков N = 2000) подключается к источнику постоянной ЭДС = 24 В через сопротивление R = 1 Ом (сопротивлением самого соленоида можно пренебречь). Найти электромагнитную энергию, втекающую в соленоид в процессе установления тока.
В однородной и изотропной среде с = 3,00 и = 1,00 распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны = 10,0 В/м. Найти: 1) амплитуду напряженности магнитного поля волны; 2) фазовую скорость волны.
Обкладки плоского конденсатора имеют форму дисков радиуса R = 20 мм. Расстояние между дисками d << R. Пространство между ними заполнено однородным диэлектриком с диэлектрической и магнитной проницаемостями = 4 и = 4. Конденсатор включен в цепь переменного тока , с частотой = 50 Гц. Пренебрегая краевыми эффектами, определить отношение максимальной магнитной энергии в конденсаторе к максимальной электрической.
Плоский воздушный конденсатор, обкладками которого являются два одинаковых диска, заряжен до высокой разности потенциалов, а затем отключен от источника напряжения. В центре конденсатора происходит пробой – по оси проскакивает электрическая искра и, как следствие, конденсатор разряжается. Считая разряд квазистационарным и пренебрегая краевыми эффектами, определить полный поток электромагнитной энергии, вытекающий за время разряда из пространства между обкладками.
Напряженность электрического поля в зазоре между обкладками конденсатора площадью S = 1 см2, заполненного диэлектриком = 1000, изменяется по закону E = (0,1 + 0,17) 106 В/м с. Определить силу тока смещения в таком электрическом поле.
При разрядке длинного цилиндрического конденсатора длиной = 1 см и внешним радиусом R = 1 см в подводящих проводниках течет ток проводимости силой = 1 10–7 А. Определить плотность тока смещения в диэлектрике между обкладками конденсатора.
Тонкое кольцо радиусом R = 20 см, несущее равномерно распределенный заряд = 45 мкКл, движется с постоянной скоростью = 15 м/с. Плоскость кольца все время остается ортогональной направлению движения. Вычислить максимальное значение плотности тока смещения.