Тесты были сданы в 2024 году.
Представлены ответы на большинство вопросов по предмету "Высшая математика [Темы 7-12]".
Итоговый набранный балл 100 из 100 (Скриншот прилагаю).
ВНИМАНИЕ! Покупайте работу, только убедившись, что ваши вопросы совпадают с представленными ниже. Для этого рекомендую сначала запустить тест и сверить хотя бы несколько вопросов.
ТЕСТ 7
График четной функции симметричен относительно …
Дана функция f(x) = −x² + 8x − 13. Найдите множество значений данной функции.
Если известно, что функция f(x) имеет устранимый разрыв в точке x = 2 и lim f(x) = 1, x⟶2−0, тогда lim f(x), x⟶2+0 равен …
Значение предела lim (2x⁵ − 3x³ + 1) / (x⁵ + 4x² + 2x), x⟶∞ равно …
Предел lim (7x² + 4x − 3) / (2x² + 3x + 1), x⟶−2 равен …
Пусть даны множества A={1,2,3} и B={3,4,5}, тогда единственный элемент множества A∩B равен …
Пусть даны множества A={1,2,3} и B={3,4,5}, тогда сумма всех элементов множества A∪B равна …
Пусть последовательность задана формулой xn=(-1)n, тогда сумма первых трех ее членов равна …
Расположите данные числа в порядке принадлежности множествам «рациональных чисел, иррациональных чисел, натуральных чисел, множество целых чисел»:
1 1/3
2 √3
3 3
4 -3
Установите соответствие между свойствами пределов и их значениями:
A. lim c ⋅ f(x), x⟶x₀
B. lim (f(x) + g(x)), x⟶x₀
C. lim f(x) / g(x), x⟶x₀
D. c ⋅ lim f(x), x⟶x₀
E. lim f(x), x⟶x₀ + lim g(x), x⟶x₀
F. lim f(x), x⟶x₀ : lim g(x), x⟶x₀
Функция … является четной
ТЕСТ 8
Значение производной функции y=7x³-2x²+5x-1 в точке x₀=0 равно …
Значение производной функции y=ln(7x-7) в точке x₀=0 равно …
Значение производной функции y=x∙lnx в точке x₀=1 равно …
Производная сложной функции y = √(x² − 3x + 17) имеет вид …
Производная функции y = √(x² − 3x + 17) в точке x₀ = 1 равна …
Производная функции y=7x³-2x²+5x-1 имеет вид …
Расположите значения производных для функций в порядке «y=xⁿ,y=aˣ,y=√x»:
1 y' = n ⋅ xⁿ⁻¹
2 y' = aˣ ⋅ lna
3 y' = 1 / 2√x
Существует уравнение касательной к прямой в x = −1 функции y = x² / (x + 2)².
Найдите уравнение касательной.
Точка x₀ называется точкой максимума функции y=f(x), если для всех точек x≠x₀ из некоторой окрестности точки x₀ выполняется неравенство …
Установите соответствие между правилами дифференцирования и соответствующими формулами:
A. (u+v)'
B. (u∙v)'
C. (u/v)'
D. u' +v'
E. u' v+uv'
F. (u'v − uv') / v²
Функция у = f(x) называется … функцией на множестве D, если для любых x₁, x₂ ϵ D из неравенства x₁ < x₂ следует неравенство f(x₁) < f(x₂)
ТЕСТ 9
Дан неопределенный интеграл ∫ sinx cos⁵ xdx.Вычислите его значение.
Неопределенный интеграл ∫ x(1 − 2x)³dx равен …
Несобственный интеграл является … интегралом, если предел соответствующего ему собственного интеграла не существует или равен бесконечности
Определенный интеграл ∫ (x / √(1 + x))dx, x=3..8 равен …
Определенный интеграл ∫ (1 / √(x + 1))dx, x=0..1 равен …
Определенный интеграл ∫ f(x)dx, x=a..a равен …
Расположите значения данных интегралов в порядке возрастания:
1 x²dx, x=1..2
2 x⁴dx, x=1..2
3 (3 − 2x − x²)dx, x=-2..1
Результат вычисления интеграла ∫ x⁻⁴dx, x=1..+∞ составляет …
Согласно формуле Ньютона-Лейбница ∫ f(x)dx =, x=a..b …
Установите соответствие между интегралом элементарной функции и его значением:
A. ∫ dx/x
B. ∫ sinxdx
C. ∫ dx/cos²x
D. ln |x|+C
E. -cos fx+C
F. tg x+C
Функция F(x) называется … для функции f(x), если F(x)' =f(x)
ТЕСТ 10
Дифференциал функции двух переменных z=5x-3y имеет вид …
Если для функции f(x; y) справедливо равенство fx'(x₀; y₀) = fy'(x₀; y₀) = 0, то точка (x₀; y₀) является …
Значение предела lim x² + 2y² + 6, x⟶0, y⟶1 равно …
Значение функции z(x; y)=2x-y+15 в точке A(-2; 1) равно …
Необходимо вычислить значение 1,242,02. Проведите данное вычисление, используя дифференциал.
· 1,5
· 1,08
· 2
Область на плоскости с присоединенной к ней границей называется … областью
Расположите данные выражения для функции z(x;y)=7x³+5xy+3x-2y³ в порядке «частная производная по x первого порядка, частная производная по x второго порядка, частная производная по y первого порядка»:
1 21x²+5y+3
2 42x
3 5x-6y²
Установите соответствие между функцией двух переменных и ее частной производной по переменной x:
A. z=3x²+2y-3
B. z=5x²-3y+1
C. z=x³+7x-2
D. zx' =6x
E. zx' =10x
F. zx' =3x²
Функция k=3x+5y-2z+1+l является функцией … переменных
Частная производная по переменной y функции z(x; y) = 5x⁴y² равна
Частная производная ∂z(x; y)/∂x функции z(x; y) = y − 3x³ + 2 равна
ТЕСТ 11
График решения дифференциального уравнения называется … кривой
Дано обыкновенное дифференциальное равнение первого порядка: y' + y/x = x² ⋅ y⁴.
Приведите решение данного уравнения.
Дифференциальное уравнение xy' − y = xe^(y/x) …
Задачей … называется задача нахождения такого решения уравнения, которое при x=x_0 принимает значение y=y_0
Метод вариации произвольной постоянной решения линейного дифференциального уравнения также называется методом …
Общее решение уравнения (2x+1)dy+y² dx=0 имеет вид …
Решение уравнения y'+y∙sinx=0 имеет вид …
Упорядочьте дифференциальные уравнения от первого до третьего порядка:
1 y'-3y=2x
2 y"-xy=0
3 y"' +3 y' +0
Уравнение вида N(x,y)dx+M(x,y)dy=0 называется уравнением в …
Установите соответствие между дифференциальным уравнением первого порядка и его общим видом:
A. Дифференциальное уравнение с разделенными переменными
B. Дифференциальное уравнение с разделяющимися переменными
C. Однородное дифференциальное уравнение
D. f(y)dy=f(x)dx
E. f₁ (x)g(y)dx=f₂ (x)dy
F. P(x,y)dx=Q(x,y)dy
Функция f(x; y) = 2xy / (x² + y²) является …
ТЕСТ 12
Дано линейное дифференциальное уравнение второго порядка: y''+y'-2y=0. Приведите решение данного уравнения.
Дискриминант характеристического уравнения дифференциального уравнения y''-5 y'+6y=0 равен …
Если дифференцируемые функции y₁=y₁ (x) и y₂=y₂(x) линейно зависимы на (a,b), то определитель Вронского равен …
Линейное неоднородное дифференциальное уравнение y''-4y'=10 имеет частное решение с неопределенными коэффициентами вида …
Общее решение уравнения y''-4y=0 имеет вид …
Общее решение уравнения y''-5 y'+6y=0 имеет вид …
Определитель вида W(x) =│(y₁, y₂), (y'₁, y'₂)│ для двух дифференцируемых функций y₁ = y₁(x) и y₂ = y₂(x) называется определителем …
Упорядочьте дифференциальные уравнения следующим образом: «дифференциальное уравнение 1-го порядка, линейное однородное дифференциальное уравнение 2-го порядка, линейное неоднородное дифференциальное уравнение 2-го порядка»:
1 y'-3y+2x=0
2 y''+py'+qy=0
3 y''+py'+qy=f(x)
Условием существования двух комплексных корней характеристического уравнения дифференциального уравнения является то, что дискриминант характеристического уравнения …
Установите соответствие между корнями характеристического уравнения и общим решением линейного дифференциального уравнения второго порядка:
A. k₁≠k₂
B. k₁=k₂
C. k₁=k₂=a+ib
D. y = c₁e^(k₁x) + c₂e^(k₂x)
E. y = c₁eᵏˣ + c₂eᵏˣ
F. y = e^(ax) ⋅ (c₁cosbx + c₂sinbx)
Функции y_1=y_1 (x) и y_2=y_2 (x) называются линейно … на (a,b), если равенство α₁y₁+α₂y₂+0 выполняется тогда и только тогда, когда числа α₁ = α₂ = 0
ИТОГОВЫЙ ТЕСТ
Абсцисса точки пересечения прямых y₁=2x+1 и y₂ =-2x-1 равна …
В древнем Китае матрицы называли …
Вектор a{1, 2, 3} имеет длину, равную …
· √219
· √218
· √220
Векторное произведение векторов a{1, 2, 3} и b{5, 4, 3} равно …
Вронскианом называется определитель вида …
· |(y₁, y₂), (y₁', y₂')|
· |(y₁, y₂), (y₁², y₂²)|
· |(y₁, y₂), (y₁'', y₂'')|
Габриэль Крамер опубликовал «правило Крамера» в …
График нечетной функции симметричен относительно …
Данное дифференциальное уравнения (2x+1) y'+y=x …
· является линейным
· является однородны
· не является ни однородным, ни линейным
Две плоскости пересекаются, если они имеют …
Две прямые y₁=7x+5 и y₂=7x-5 на плоскости …
Дискриминант характеристического уравнения данного дифференциального уравнения y''+5y'-6y=0 равен …
Дифференциал функции двух переменных z=3x+2y имеет вид …
Если дифференцируемые функции y₁=y₁(x) и y₂=y₂ (x) линейно независимы от решения дифференциального уравнения на (a,b), то определитель Вронского на этом интервале нигде не может быть равен …
Если известно, что функция f(x) имеет устранимый разрыв в точке x = 3 и lim f(x) = 2, x⟶3−0, тогда lim f(x), x⟶3+0 равен …
Если даны матрицы ((8, −4), (−5, 0)) и ((1, −7), (4, 9)), то значение выражения A² − Bᵀ будет …
Если свойство транспонирования произведения матриц выглядит как (A⋅B)T=BT⋅AT, то можно утверждать, что транспонирование произведения матриц есть …
Задачей … называется задача нахождения такого решения уравнения, при котором интегральная кривая решения проходит через точку с координатами (x₀,y₀)
Значение предела lim (5x³ + x² + 1) / (2x⁴ − 3x² + 5x + 2), x⟶∞ равно …
Значение предела lim x² + 2y² + 6, x⟶0, y⟶1 равно …
Значение производной функции y=3x³+2x²-5x+7 в точке x₀=0 равно …
Значение производной функции y=ln(1+5x) в точке x₀=0 равно …
Значение производной функции y=x∙lnx в точке x₀=e равно …
Значение функции z(x;y)=3x-2y+16 в точке A(1; 2) равно …
Какое из следующих действий не относится к элементарным преобразованиям матрицы
· умножение строки на число, отличное от нуля
· перестановка местами двух строк
· возведение строки в квадрат
Каноническое уравнение прямой, проходящей через точки A(-3,0) и B(5,2), имеет вид …
Координаты середины отрезка с концами в точках А(3,-2,5) и А(5,2,-7) равны …
· (4,-2,6)
· (1,0,-3)
· (4,0,-1)
Косинус угла между прямыми y₁=2x+1 и y₂=-x+2 равен …
Линейное неоднородное дифференциальное уравнение y''+4y'=10x²+1 имеет частное решение с неопределенными коэффициентами вида …
Матрица ((1, 1, 1), (1, 0, 1), (1, 1, 1), (1, 1, 1)) имеет размерность …
Матрица А называется невырожденной, если …
Матрица произвольной размерности A = ((a11, a12, …, a1n), (0, a21, …, a2n), (…, …, …, …), (0, 0, 0, 0)), где a11, a22, …, arn ≠ 0, называется … матрицей
Метод решения линейного дифференциального уравнения, при котором решение ищется в виде произведения двух функций, называется методом …
Множество точек плоскости, обладающих свойствами открытости и связности, называется …
Наивысший порядок производной неизвестной функции, входящей в уравнение, называется … уравнения
Неопределенный интеграл ∫ dx / (x² + 4x + 5) равен …
Несобственный интеграл является … интегралом, если существует конечный предел соответствующего ему собственного интеграла
Общее решение уравнения y'+4y=0 имеет вид …
Общее решение уравнения y''+5y'-6y=0 имеет вид …
Определенный интеграл ∫ (1 / √(x + 1))dx, x=0..2 равен …
Определенный интеграл ∫ (x / √(1 + x))dx, x=0..3 равен …
Определенный интеграл ∫ f(x)dx, x=2..2 равен …
Предел lim (x² − 2x) / (x² − 4), x⟶2 равен …
При перестановке двух строк матрицы ее определитель …
Производная сложной функции y = √(x³ + 5x² – 3) имеет вид …
Производная функции у=3х³+2x²-5x+7 имеет вид …
· 9x²+4x-5
· 21x²-4x+5
· -21x²-4x-5
Процесс нахождения первообразной для данной функции называют …
Пусть дан вектор a{−3, 7, 2}, тогда длина вектора 3a равна …
Пусть дана матрица A = ((1, 2, 3), (2, 1, 3), (3, 2, 1)), тогда квадрат определителя этой матрицы будет равен …
Пусть дана матрица A = ((1, 2, 3), (2, 1, 3), (3, 2, 1)), тогда сумма миноров M₂₂ + M₃₃ равна …
· -11
· -12
· -10
Пусть дана матрица A = ((12, −17), (−5, −9)), тогда ее определитель равен …
Пусть дана матрица A = ((2, 3), (1, −2)), тогда обратная матрица будет иметь вид …
Пусть дана система уравнений A = {2x₁ + x₂ - 2x₃ = 9, 3x₁ - 2x₂ + x₃ = 2, x₁ + x₂ - 4x₃ = 11, тогда определитель |A| этой системы равен
Пусть дана система уравнений A = {2x₁ + x₂ − 2x₃ = 9, 3x₁ − 2x₂ + x₃ = 2, x₁ + x₂ − 4x₃ = 11, тогда определитель |A₁| этой системы равен
Пусть дана система уравнений A = {2x₁ + x₂ − 2x₃ = 9, 3x₁ − 2x₂ + x₃ = 2, x₁ + x₂ − 4x₃ = 11, тогда определитель |A₃| этой системы равен
Пусть дана система уравнений A = {3x – 4y + z = 0, 2x + y – 3z = –5, x – 2y + z = 0, тогда данная система …
Пусть даны векторы a{3, 4, 5} и b{6, 7, 8}, тогда сумма координат вектора a + b равна …
Пусть даны множества A={3,4,5} и B={7,6,5}, тогда единственный элемент множества A∩B равен …
Пусть даны множества A={3,4,5} и B={7,6,5}, тогда сумма всех элементов множества A∪B равна …
Пусть последовательность задана формулой xn=(-1)n, тогда разность первых трех ее членов равна …
Пусть уравнение плоскости задано точкой A(-2, 2, 8) и нормалью n(1, 2, 3), тогда коэффициент при переменной x в данном уравнении равен
Разность координат нормального вектора плоскости 3x-y+2z+2=0 равна …
Расположите выражения, известные для системы линейных уравнений {3x₁ + 2x₂ – x₃ = 2, x₁ – 3x₂ + 2x₃ = 3, 2x₁ + 4x₂ – 2x₃ = 4 в порядке «основная матрица системы, расширенная матрица системы, матрица неизвестных, матрица правой части»:
1 ((3, 2, –1), (1, –3, 2), (2, 4, –2))
2 ((3, 2, –1, 2), (1, –3, 2, 3), (2, 4, –2, 4))
3 (x₁, x₂, x₃)
4 (2, 3, 4)
Расположите данные выражения для функции z(x;y)=3x³+7xy-5x+3y⁴ в последовательности «частная производная по x первого порядка, частная производная по x второго порядка, частная производная по y первого порядка»:
1 9x²+7y-5
2 18x
3 7x+12y³
Расположите действия нахождения обратной матрицы в логическом порядке:
1 найти определитель исходной матрицы
2 найти транспонированную матрицу к исходной
3 найти алгебраические дополнения
4 составить обратную матрицу
Расположите дифференциальные уравнения в последовательности «дифференциальное уравнение 1-го порядка, линейное однородное дифференциальное уравнение 2-го порядка, линейное неоднородное дифференциальное уравнение 2-го порядка»:
1 2x+ y'-y=0
2 y''+2y'+3y=0
3 y''+2y'+3y=x²
Расположите длины векторов a{1, 2, 3}, b{−1, 2, 4} и c{3, −4, 5} в порядке возрастания:
1 │a│
2 │b│
3 │c│
Расположите значения данных интегралов в порядке убывания:
1 ∫ 2x²dx, x=1..2
2 ∫ (x³ − x²)dx, x=0..2
3 ∫ dx / x, x=1..-e
Расположите значения производных для функций в порядке «y=sinx,y=cosx,y=lnx»:
Расположите матрицы в порядке «нижняя треугольная, квадратная, верхняя треугольная, неквадратная»:
1 ((3, 0, 0), (3, 3, 0), (3, 3, 3))
2 ((2, 2, 2), (2, 2, 2), (2, 2, 2))
3 ((2, 2, 2), (0, 2, 2,), (0, 0, 2))
4 ((1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1))
Расположите прямые y₁, y₂ и y₃, заданные уравнениями, в порядке убывания их угловых коэффициентов:
1 y₃ = -9
2 y₁ = -7x+1
3 y₂ = -8x+2
Расположите точки A(0,7,2), B(1,2,3) и C(-5,7,9) в порядке принадлежности плоскостям «x-y+1=0,4x-26y+33z-95=0, -17x+5y+18z-71-0»
1 B
2 C
3 A
Расположите числа в порядке принадлежности множествам «иррациональных чисел, рациональных чисел, целых чисел, натуральных чисел»:
1 √2
2 1/2
3 -2
4 2
Расстояние от точки A(2,1) до прямой 3x-4y-3=0 равно …
Расстояние от точки A(2,3,-1) до плоскости 2x-y+3z=2 равно …
· 4/√14
· 2/√14
· -4/√15
Результат вычисления интеграла ∫ x⁴dx, x=1..3 составляет
· 1/5
· 243
· 242/5
Решение уравнения y'=5x+2 имеет вид …
Решением системы уравнений A = {2x₁ + x₂ − 2x₃ = 9, 3x₁ − 2x₂ + x₃ = 2, x₁ + x₂ − 4x₃ = 11, будет …
· (2, 1, −2)
· (−2, 1, −2)
· (2, 1, 2)
Скалярное произведение векторов a{7, 8, 9}, b{−3, 4, −5} равно …
Сопоставьте матричные уравнения и их решения
A. A∙X=B
B. X∙A=B
C. A∙X∙C=B
D. X=A-1∙B
E. X=B∙A-1
F. X=A-1∙B∙C-1
Сумма координат вектора a = −3I + 2j + 5k равна …
Сумма координат нормального вектора плоскости 3x-2y+z-1=0 равна …
Сумма координат середины отрезка с концами в точках A(-3,-2,5) и A(5,2,-7) равна …
Сумма координат точки пересечения прямых y₁=2x+1 и y₂ =3x-2 равна …
Сумма элементов второй строки матрицы, обратной к матрице A = ((2, 2, 1), (1, 3, 1), (1, 0, 0)) равна …
Точка x₀ называется точкой минимума функции y=f(x), если для всех точек x≠x₀ из некоторой окрестности точки x₀ выполняется …
Три вектора образуют базис в пространстве тогда и только тогда, когда эти векторы …
Упорядочьте дифференциальные уравнения от первого до третьего порядка:
1 y' +3 y=x²
2 y''=xy
3 y'''-3y'=0
Уравнение … является каноническим уравнением прямой
· 3x+2y-5=0
· (x – 2)/3 = (y + 1)/2
· {x = 3t + 1; y = t – 1
Уравнение y' +2y=4 при условии y(0)=5 имеет частное решение…
Уравнение вида y' +p(x)y=q(x)⋅уn называется уравнением …
· Бернулли
· Пифагора
· Коши
Уравнение прямой, проходящей через точки А(5,-6) и В(-7,0), имеет вид …
· y = -0,5x-3,5
· y = -0,5x+3,5
· y = 0,4x+2,2
Условием существования двух действительных корней характеристического уравнения дифференциального уравнения является то, что дискриминант характеристического уравнения …
Установите соответствие между взаимным расположением прямых y₁=k₁ x+b₁ и y₂=k₂ x+b₂ на плоскости и условием этого расположения:
A. Прямые параллельны
B. Прямые перпендикулярны
C. Прямые совпадают
D. k₁=k₂,b₁≠b₂
E. k₁∙k₂=-1
F. k₁=k₂,b₁=b₂
Установите соответствие между действиями над матрицами A = ((1, −7), (4, 9)) и B = ((8, −4), (−5, 0)) и результатами этих действий:
A. A+B
B. A-B
C. A⋅B
D. B⋅A
E. ((9, −11), (−1, 9))
F. ((−7, −3), (−5, 0))
G. ((−7, −3), (9, 9))
H. ((−8, −92), (−5, 35))
Установите соответствие между интегралом элементарной функции и его значением:
A. ∫ eˣ dx
B. ∫ cosx dx
C. ∫ dx / sin²x
D. eˣ+C
E. sinx+C
F. -ctgx+C
Установите соответствие между линейными операциями над векторами a{a₁, a₂, a₃} и b{b₁, b₂, b₃} и результатами этих операций:
A. a + b
B. b − a
C. kb
D. {a₁ − b₁, a₂ − b₂, a₃ − b₃}
E. {b₁ − a₁, b₂ − a₂, b₃ − a₃}
F. {kb₁, kb₂, kb₃}
Установите соответствие между общим видом дифференциального уравнения и методом его решения:
A. f(y)dy=f(x)dx
B. f₁ (x)g(y)dx=f₂ (x)dy
C. P(x,y)dx=Q(x,y)dy
D. проинтегрировать обе части уравнения
E. разделить переменные и проинтегрировать обе части уравнения
F. применить подстановку y=ux,u=f(x)
Установите соответствие между операциями над матрицами и их характеристиками
A. Сложение матриц
B. Вычитание матриц
C. Умножение матрицы на число
D. сложение соответствующих элементов матриц
E. вычитание соответствующих элементов матриц
F. умножение всех элементов матрицы на число
Установите соответствие между понятием и соответствующей формулой:
A. Приращение функции в точке x₀
B. Дифференциал функции
C. Производная функции в точке x₀
D. Δy = f(x₀ + Δx) − f(x₀)
E. dy = f'(x)dx
F. f'(x₀) = lim Δy / Δx, Δx⟶0
Установите соответствие между правой частью нелинейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами и его частным решением
A. f(x)=aemx, m≠k₁≠k₂
B. f(x)= aemx, m=k₁
C. f(x)=ax²+bx+c
D. ỹ = Aemx
E. ỹ = Axemx
F. ỹ = Ax² + Bx + C
Установите соответствие между свойствами пределов и их значениями:
A. lim c, x⟶x₀
B. lim (f(x) ⋅ g(x)), x⟶x₀
C. lim (f(x) − g(x)), x⟶x₀
D. 0
E. lim f(x), x⟶x₀ ⋅ lim g(x), x⟶x₀
F. lim f(x), x⟶x₀ − lim g(x), x⟶x₀
Установите соответствие между способом задания прямой в пространстве и ее уравнением:
A. Общее уравнение прямой
B. Точки M₁ (x₁, y₁, z₁ ) и M₂ (x₂, y₂, z₂ ) лежат на прямой
C. Известны напрявляющий вектор l(m, n, p) и точка M(x₀, y₀, z₀)
D. {A₁x + B₁y + C₁z = 0, A₂x + B₂y + C₂z = 0
E. (x − x₁) / (x₂ − x₁) = (y − y₁) / (y₂ − y₁) = (z − z₁) / (z₂ − z₁)
F. (x − x₀) / m = (y − y₀) / n = (z − z₀) / p
Установите соответствие между функцией двух переменных и ее частной производной по переменной x:
A. z=3x²+5x-2y
B. z=x²-x+1
C. z=2x³-3x
D. zx' =6x+5
E. zx' =2x-1
F. zx' =6x-3
Функция … является нечетной
Функции y₁=y₁ (x) и y₂=y₂ (x) называются линейно … на (a,b), если равенство α₁y₁+α₂y₂+0 выполняется тогда и только тогда, когда хотя бы одно из чисел α₁ или α₂ отлично от нуля
Функция нескольких переменных является дифференцируемой, если …
Функция f(x; y) = (2x - y²) / (x² + y²) является …
Функция k=3x+5y-2z+1 является функцией …
Функция у = f(x) называется … функцией на множестве D, если для любых x₁, x₂ ϵ D из неравенства x_1<x_2 следует неравенство f(x_1)>f(x_2)
Целой положительной степенью Am квадратной матрицы A называется … m матриц, равных A
Частная производная по переменной x функции z(x;y)=5x⁴ y² равна …
Частная производная ∂z(x; y)/∂y функции z(x; y) = y − 3x³ + 2 равна …
· 3
· 1
· 2
Числа x и y в разложении вектора a = xe₁ + ye₂ относительно осей e₁ и e₂ называются … вектора a
Число, равное наивысшему порядку минора матрицы, называется … матрицы
КОМПЕТЕНТНОСТНЫЙ ТЕСТ
Дан вектор a = {2, 3, 2}.
Найдите вектор x, коллинеарный вектору a и удовлетворяющий условию (x, a) = 34.
Дан матричный многочлен f(A) = 3A²– 5A + 2. Нужно вычислить его значение.
Приведите метод решения.
Дан определенный интеграл ∫ (√x /(1 + √x))dx, x=0..1.
Вычислите его значение.
Дана матрица |A| = |(1, 0, 1), (2, 3, 5), (0, 4, 8)|.
Существует ли обратная матрица для данной матрицы и почему?
Дана матрица А = ((1, 0, 1), (2, 3, 5), (0, 4, 8))
Чему равен определитель данной матрицы? Будет ли он совпадать с определителем транспонированной матрицы?
Дана система уравнений {x₁ + 2 ⋅ x₂ − x₃ = 1, −3 ⋅ x₁ + x₂ + 2 ⋅ x₃ = 0, x₁ + 4 ⋅ x₂ + 3 ⋅ x₃ = 2
Решая уравнение методом Гаусса, какие действия необходимо совершить?
Дана система уравнений {x₁ + 2 ⋅ x₂ - x₃ = 1, −3 ⋅ x₁ + x₂ + 2 ⋅ x₃ = 0, x₁ + 4 ⋅ x₂ + 3 ⋅ x₃ = 2.
Сколько решений имеет эта система уравнений и почему?
Дана функция f(x) = arccos(x/2 − 1).
Найдите область определения функции.
Дана функция f(x) = lg(3x − 1) + 2lg(x + 1).Найдите область определения функции.
Дана функция z = x²siny, z''xx.
Найдите частные производные второго порядка для этой функции.
Дана функция: z=x²-2xy²+y³. Найдите частные производные второго порядка для этой функции.
Дана функция, заданная неявно: 2x² + 3y² = 9x.
Найдите производную данной функции
Дана функция, заданная параметрически: {x = 5t² + 3, y = t⁷ − 8.
Найдите производную первого порядка.
Дано дифференциальное уравнение: y'+2y=4x.Решите это уравнение.
Дано линейное дифференциальное уравнение второго порядка: y''-4y'+5y=0.
Решите это уравнение
Дано линейное дифференциальное уравнение второго порядка: y''-4y'+5y=0.
Решите это уравнение.
Даны векторы p и a.
Найдите орт вектора p (вектор единичной длины и того же направления, что вектор p) перпендикулярный вектору a и оси OX ⋅ pª ⊥ a = {3, 6, 8} и pª ⊥ OX.
Даны следующие матрицы: А₂ = ((1, 2), (3, 6)), В₂ = ((2, 6), (−1, 3)). Над данными матрицами было произведено алгебраическое действие, в результате которого получена матрица C₂ = ((3, 8), (2, 9)).
Какое алгебраическое действие было произведено?
Даны следующий матрицы: A₂ = ((1, 2), (3, 6)), B₂ = ((2, 6), (−1, 3)). Над данными матрицами было произведено алгебраическое действие, в результате которого получена матрица C₂ = ((3, 8), (2, 9)).
Какое алгебраическое действие было произведено?
Известно, что прямая проходит через точки A(1; 1) и B(–2; 3). Найти угловой коэффициент k данной прямой и ординату b точки ее пересечения с осью Oy.
Параллелепипед построен на векторах a = 3i + 2j − 5k, b = i − j + 4k, c = i − 3j + k.
Вычислите высоту h данного параллелепипеда, если за основание взят параллелограмм, построенный на векторах a и b.
Плоскости π₁ и π₂ заданы уравнениями 2x − y + 3z + 5 = 0 и x / 1 + y / −2 + z / 3 = 1.
Определите угол φ между данными плоскостями.
Прямые 15x + 36y –105 = 0 и 5x + 12y + 30 = 0 параллельны. Найдите расстояние между данными прямыми.
Фигура, образованная путем вращения вокруг оси Oх, ограничена линиями y=4x-x²,y=x. Найдите объем данного тела.