Высшая математика Синергия Ответы на тесты 7-12, итоговый тест, компетентностный

Раздел
Математические дисциплины
Тип
Просмотров
515
Покупок
29
Антиплагиат
Не указан
Размещена
19 Июн в 19:59
ВУЗ
Синергия МТИ МосАП
Курс
Не указан
Стоимость
400 ₽
Демо-файлы   
1
png
Итоговый балл 100 из 100 Итоговый балл 100 из 100
47.8 Кбайт 47.8 Кбайт
Файлы работы   
1
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
pdf
Высшая математика. Тесты 7-12, итоговый тест, компетентностный
379.5 Кбайт 400 ₽
Описание

Тесты были сданы в 2024 году.

Представлены ответы на большинство вопросов по предмету "Высшая математика [Темы 7-12]".

Итоговый набранный балл 100 из 100 (Скриншот прилагаю).

ВНИМАНИЕ! Покупайте работу, только убедившись, что ваши вопросы совпадают с представленными ниже. Для этого рекомендую сначала запустить тест и сверить хотя бы несколько вопросов.

Оглавление

ТЕСТ 7

 

График четной функции симметричен относительно …

  • оси ординат
  • оси абсцисс
  • начала координат

 

Дана функция f(x) = −x² + 8x − 13. Найдите множество значений данной функции.

  • x ∈ (−∞; 3)
  • x ∈ [3; +∞)
  • x ∈ (−∞; 3]

 

Если известно, что функция f(x) имеет устранимый разрыв в точке x = 2 и lim f(x) = 1, x⟶2−0, тогда lim f(x), x⟶2+0 равен …

  • 0
  • 1
  • -1

 

Значение предела lim (2x⁵ − 3x³ + 1) / (x⁵ + 4x² + 2x), x⟶∞ равно …

 

Предел lim (7x² + 4x − 3) / (2x² + 3x + 1), x⟶−2 равен …

  • 15/3
  • 17/3
  • 14/3

 

Пусть даны множества A={1,2,3} и B={3,4,5}, тогда единственный элемент множества A∩B равен …

 

Пусть даны множества A={1,2,3} и B={3,4,5}, тогда сумма всех элементов множества A∪B равна …

 

Пусть последовательность задана формулой xn=(-1)n, тогда сумма первых трех ее членов равна …

 

Расположите данные числа в порядке принадлежности множествам «рациональных чисел, иррациональных чисел, натуральных чисел, множество целых чисел»:

1 1/3

2 √3

3 3

4 -3

 

Установите соответствие между свойствами пределов и их значениями:

A. lim c ⋅ f(x), x⟶x₀

B. lim (f(x) + g(x)), x⟶x₀

C. lim f(x) / g(x), x⟶x₀

D. c ⋅ lim f(x), x⟶x₀

E. lim f(x), x⟶x₀ + lim g(x), x⟶x₀

F. lim f(x), x⟶x₀ : lim g(x), x⟶x₀

 

Функция … является четной

  • y=sinx
  • y=x⁴
  • y=x³

 

 

ТЕСТ 8

 

Значение производной функции y=7x³-2x²+5x-1 в точке x₀=0 равно …

 

Значение производной функции y=ln(7x-7) в точке x₀=0 равно …

 

Значение производной функции y=x∙lnx в точке x₀=1 равно …

 

Производная сложной функции y = √(x² − 3x + 17) имеет вид …

  • (2x − 3) / √(x² − 3x + 17)
  • (2x − 3) / 2√(x² − 3x + 17)
  • −(2x − 3) / √(x² − 3x + 17)

 

Производная функции y = √(x² − 3x + 17) в точке x₀ = 1 равна …

  • −1 / 2√15
  • 1 / 2√15
  • −1 / √15

 

Производная функции y=7x³-2x²+5x-1 имеет вид …

  • -21x²+4x+5
  • 21x²-4x+5
  • -21x²-4x-5

 

Расположите значения производных для функций в порядке «y=xⁿ,y=aˣ,y=√x»:

1 y' = n ⋅ xⁿ⁻¹

2 y' = aˣ ⋅ lna

3 y' = 1 / 2√x

 

Существует уравнение касательной к прямой в x = −1 функции y = x² / (x + 2)².

Найдите уравнение касательной.

  • y=-4x-3.
  • y = 4x + 3.
  • y = (−4x − 3) / 2.

 

Точка x₀ называется точкой максимума функции y=f(x), если для всех точек x≠x₀ из некоторой окрестности точки x₀ выполняется неравенство …

  • f(x)<f(x₀)
  • f(x)>f(x₀)
  • f(x)=f(x₀)

 

Установите соответствие между правилами дифференцирования и соответствующими формулами:

A. (u+v)'

B. (u∙v)'

C. (u/v)'

D. u' +v'

E. u' v+uv'

F. (u'v − uv') / v²

 

Функция у = f(x) называется … функцией на множестве D, если для любых x₁, x₂ ϵ D из неравенства x₁ < x₂ следует неравенство f(x₁) < f(x₂)

 

 

ТЕСТ 9

 

Дан неопределенный интеграл ∫ sinx cos⁵ xdx.Вычислите его значение.

  • 1/2 ⋅ tg(x²) + C.
  • −3¹⁻⁵ˣ / 5ln3 + C.
  • −cos⁶x / 6 + C.

 

Неопределенный интеграл ∫ x(1 − 2x)³dx равен …

  • 2x⁴ + C
  • −8x⁵/5 + C
  • −2x³ + 3x⁴ − 8x⁵/5 + C

 

Несобственный интеграл является … интегралом, если предел соответствующего ему собственного интеграла не существует или равен бесконечности

 

Определенный интеграл ∫ (x / √(1 + x))dx, x=3..8 равен …

  • 1/2
  • 7/5
  • 32/3

 

Определенный интеграл ∫ (1 / √(x + 1))dx, x=0..1 равен …

  • 2√2
  • 2√2-2
  • -2√2

 

Определенный интеграл ∫ f(x)dx, x=a..a равен …

 

Расположите значения данных интегралов в порядке возрастания:

1 x²dx, x=1..2

2 x⁴dx, x=1..2

3 (3 − 2x − x²)dx, x=-2..1

 

Результат вычисления интеграла ∫ x⁻⁴dx, x=1..+∞ составляет …

  • 1/3
  • 3
  • 1

 

Согласно формуле Ньютона-Лейбница ∫ f(x)dx =, x=a..b …

  • F(a)-F(b)
  • F(b)-F(a)
  • F(a)+F(b)

 

Установите соответствие между интегралом элементарной функции и его значением:

A. ∫ dx/x

B. ∫ sinxdx

C. ∫ dx/cos²x

D. ln |x|+C

E. -cos fx+C

F. tg x+C

 

Функция F(x) называется … для функции f(x), если F(x)' =f(x)

 

 

ТЕСТ 10

 

Дифференциал функции двух переменных z=5x-3y имеет вид …

  • dz=5dx-3dy
  • dz=5dx
  • dz=3dy

 

Если для функции f(x; y) справедливо равенство fx'(x₀; y₀) = fy'(x₀; y₀) = 0, то точка (x₀; y₀) является …

  • точкой экстремума
  • точкой разрыва
  • стационарной точкой

 

Значение предела lim x² + 2y² + 6, x⟶0, y⟶1 равно …

 

Значение функции z(x; y)=2x-y+15 в точке A(-2; 1) равно …

 

Необходимо вычислить значение 1,242,02. Проведите данное вычисление, используя дифференциал.

·        1,5

·        1,08

·        2

 

Область на плоскости с присоединенной к ней границей называется … областью

 

Расположите данные выражения для функции z(x;y)=7x³+5xy+3x-2y³ в порядке «частная производная по x первого порядка, частная производная по x второго порядка, частная производная по y первого порядка»:

1 21x²+5y+3

2 42x

3 5x-6y²

 

Установите соответствие между функцией двух переменных и ее частной производной по переменной x:

A. z=3x²+2y-3

B. z=5x²-3y+1

C. z=x³+7x-2

D. zx' =6x

E. zx' =10x

F. zx' =3x²

 

Функция k=3x+5y-2z+1+l является функцией … переменных

  • трех
  • четырех
  • пяти

 

Частная производная по переменной y функции z(x; y) = 5x⁴y² равна

  • 10x⁴ y
  • 10x² y
  • 10x⁵ y

 

Частная производная ∂z(x; y)/∂x функции z(x; y) = y − 3x³ + 2 равна

  • -3x²
  • 3x²+2
  • -9x²

 

 

ТЕСТ 11

 

График решения дифференциального уравнения называется … кривой

 

Дано обыкновенное дифференциальное равнение первого порядка: y' + y/x = x² ⋅ y⁴.

Приведите решение данного уравнения.

  • z=(-3⋅ln|x|+C)⋅x³.
  • z=(-6⋅ln|x|+C)⋅x².
  • z=(-4⋅ln|x|+C)⋅x³.

 

Дифференциальное уравнение xy' − y = xe^(y/x) …

  • является линейным
  • является однородным
  • не является ни однородным, ни линейным

 

Задачей … называется задача нахождения такого решения уравнения, которое при x=x_0 принимает значение y=y_0

 

Метод вариации произвольной постоянной решения линейного дифференциального уравнения также называется методом …

 

Общее решение уравнения (2x+1)dy+y² dx=0 имеет вид …

  • y = ln│2x + 1│ + C
  • y = 2 / (ln│2x + 1│ + C)
  • y=2

 

Решение уравнения y'+y∙sinx=0 имеет вид …

  • ln y=cos x+C
  • ln x=cos x+C
  • ln y=cos y+C

 

Упорядочьте дифференциальные уравнения от первого до третьего порядка:

1 y'-3y=2x

2 y"-xy=0

3 y"' +3 y' +0

 

Уравнение вида N(x,y)dx+M(x,y)dy=0 называется уравнением в …

  • полных дифференциалах
  • постоянных дифференциалах
  • частных производных

 

Установите соответствие между дифференциальным уравнением первого порядка и его общим видом:

A. Дифференциальное уравнение с разделенными переменными

B. Дифференциальное уравнение с разделяющимися переменными

C. Однородное дифференциальное уравнение

D. f(y)dy=f(x)dx

E. f₁ (x)g(y)dx=f₂ (x)dy

F. P(x,y)dx=Q(x,y)dy

 

Функция f(x; y) = 2xy / (x² + y²) является …

  • однородной
  • неоднородной
  • условной

 

 

ТЕСТ 12

 

Дано линейное дифференциальное уравнение второго порядка: y''+y'-2y=0. Приведите решение данного уравнения.

  • y=c₁⋅eˣ+c₂⋅e⁻²ˣ.
  • y=c₁⋅eˣ+2c₂⋅e⁻²ˣ.
  • y=2c₁⋅eˣ+c₂2e⁻²ˣ.

 

Дискриминант характеристического уравнения дифференциального уравнения y''-5 y'+6y=0 равен …

 

Если дифференцируемые функции y₁=y₁ (x) и y₂=y₂(x) линейно зависимы на (a,b), то определитель Вронского равен …

  • 0
  • 1
  • -1

 

Линейное неоднородное дифференциальное уравнение y''-4y'=10 имеет частное решение с неопределенными коэффициентами вида …

  • y̅ = 10x
  • y̅ = Ax
  • y̅ = C

 

Общее решение уравнения y''-4y=0 имеет вид …

  • y = c₁e²ˣ + c₂e⁻²ˣ
  • y = c₁e²ˣ
  • y = c₁e⁻³ˣ

 

Общее решение уравнения y''-5 y'+6y=0 имеет вид …

  • y=c₁e²ˣ + c₂e³ˣ
  • y=c₁e⁻²ˣ + c₂e³ˣ
  • y=c₁e²ˣ + c₂e⁻³ˣ

 

Определитель вида W(x) =│(y₁, y₂), (y'₁, y'₂)│ для двух дифференцируемых функций y₁ = y₁(x) и y₂ = y₂(x) называется определителем …

  • Коши
  • Вронского
  • Лейбница

 

Упорядочьте дифференциальные уравнения следующим образом: «дифференциальное уравнение 1-го порядка, линейное однородное дифференциальное уравнение 2-го порядка, линейное неоднородное дифференциальное уравнение 2-го порядка»:

1 y'-3y+2x=0

2 y''+py'+qy=0

3 y''+py'+qy=f(x)

 

Условием существования двух комплексных корней характеристического уравнения дифференциального уравнения является то, что дискриминант характеристического уравнения …

  • больше нуля
  • равен нулю
  • меньше нуля

 

Установите соответствие между корнями характеристического уравнения и общим решением линейного дифференциального уравнения второго порядка:

A. k₁≠k₂

B. k₁=k₂

C. k₁=k₂=a+ib

D. y = c₁e^(k₁x) + c₂e^(k₂x)

E. y = c₁eᵏˣ + c₂eᵏˣ

F. y = e^(ax) ⋅ (c₁cosbx + c₂sinbx)

 

Функции y_1=y_1 (x) и y_2=y_2 (x) называются линейно … на (a,b), если равенство α₁y₁+α₂y₂+0 выполняется тогда и только тогда, когда числа α₁ = α₂ = 0

 

 

ИТОГОВЫЙ ТЕСТ

 

Абсцисса точки пересечения прямых y₁=2x+1 и y₂ =-2x-1 равна …

 

В древнем Китае матрицы называли …

  • «умными прямоугольниками»
  • «прекрасными трапециями»
  • «красивыми треугольниками»
  • «волшебными квадратами»

 

Вектор a{1, 2, 3} имеет длину, равную …

·        √219

·        √218

·        √220

 

Векторное произведение векторов a{1, 2, 3} и b{5, 4, 3} равно …

  • {-7,12,6}
  • {-6,12,-6}
  • {-7,-10,6}

 

Вронскианом называется определитель вида …

·        |(y₁, y₂), (y₁', y₂')|

·        |(y₁, y₂), (y₁², y₂²)|

·        |(y₁, y₂), (y₁'', y₂'')|

 

Габриэль Крамер опубликовал «правило Крамера» в …

  • 1781 г.
  • 1751 г.
  • 1741 г.
  • 1791 г.

 

График нечетной функции симметричен относительно …

  • оси ординат
  • оси абсцисс
  • начала координат

 

Данное дифференциальное уравнения (2x+1) y'+y=x …

·        является линейным

·        является однородны

·        не является ни однородным, ни линейным

 

Две плоскости пересекаются, если они имеют …

  • одну общую точку
  • две общие точки
  • бесконечно много общих точек

 

Две прямые y₁=7x+5 и y₂=7x-5 на плоскости …

  • параллельны
  • пересекаются
  • могут пересекаться или быть параллельными

 

Дискриминант характеристического уравнения данного дифференциального уравнения y''+5y'-6y=0 равен …

 

Дифференциал функции двух переменных z=3x+2y имеет вид …

  • dz=3dx
  • dz=5dy
  • dz=3dx+2dy

 

Если дифференцируемые функции y₁=y₁(x) и y₂=y₂ (x) линейно независимы от решения дифференциального уравнения на (a,b), то определитель Вронского на этом интервале нигде не может быть равен …

  • 0
  • 1
  • -1

 

Если известно, что функция f(x) имеет устранимый разрыв в точке x = 3 и lim f(x) = 2, x⟶3−0, тогда lim f(x), x⟶3+0 равен …

  • 0
  • -2
  • 2

 

Если даны матрицы ((8, −4), (−5, 0)) и ((1, −7), (4, 9)), то значение выражения A² − Bᵀ будет …

  • ((75, 36), (−16, 11))
  • ((83, −36), (−33, 11))
  • ((−83, 36), (33, −11))
  • ((8, −4), (−5, 0))

 

Если свойство транспонирования произведения матриц выглядит как (A⋅B)T=BT⋅AT, то можно утверждать, что транспонирование произведения матриц есть …

  • произведение транспонированных матриц, взятых в том же порядке
  • произведение транспонированных матриц, взятых в обратном порядке
  • сумма транспонированных матриц, взятых в том же порядке
  • разность транспонированных матриц, взятых в обратном порядке

 

Задачей … называется задача нахождения такого решения уравнения, при котором интегральная кривая решения проходит через точку с координатами (x₀,y₀)

 

Значение предела lim (5x³ + x² + 1) / (2x⁴ − 3x² + 5x + 2), x⟶∞ равно …

 

Значение предела lim x² + 2y² + 6, x⟶0, y⟶1 равно …

 

Значение производной функции y=3x³+2x²-5x+7 в точке x₀=0 равно …

 

Значение производной функции y=ln(1+5x) в точке x₀=0 равно …

 

Значение производной функции y=x∙lnx в точке x₀=e равно …

 

Значение функции z(x;y)=3x-2y+16 в точке A(1; 2) равно …

 

Какое из следующих действий не относится к элементарным преобразованиям матрицы

·        умножение строки на число, отличное от нуля

·        перестановка местами двух строк

·        возведение строки в квадрат

 

Каноническое уравнение прямой, проходящей через точки A(-3,0) и B(5,2), имеет вид …

  • (x+3)/8 = (y-1)/2
  • (x+3)/8 = y/2
  • (x+3)/10 = (y-2)/-10

 

Координаты середины отрезка с концами в точках А(3,-2,5) и А(5,2,-7) равны …

·        (4,-2,6)

·        (1,0,-3)

·        (4,0,-1)

 

Косинус угла между прямыми y₁=2x+1 и y₂=-x+2 равен …

  • √10 / 10
  • √10 / 15
  • 0.6

 

Линейное неоднородное дифференциальное уравнение y''+4y'=10x²+1 имеет частное решение с неопределенными коэффициентами вида …

  • y̅ = Ax² + Bx + C
  • y̅ = Ax
  • y̅ = x + 10

 

Матрица ((1, 1, 1), (1, 0, 1), (1, 1, 1), (1, 1, 1)) имеет размерность …

  • 3 х 4
  • 4 х 4
  • 3 х 3
  • 4 х 3

 

Матрица А называется невырожденной, если …

  • |A|=0
  • |A|≠0
  • |A|>0

 

Матрица произвольной размерности A = ((a11, a12, …, a1n), (0, a21, …, a2n), (…, …, …, …), (0, 0, 0, 0)), где a11, a22, …, arn ≠ 0, называется … матрицей

 

Метод решения линейного дифференциального уравнения, при котором решение ищется в виде произведения двух функций, называется методом …

 

Множество точек плоскости, обладающих свойствами открытости и связности, называется …

 

Наивысший порядок производной неизвестной функции, входящей в уравнение, называется … уравнения

 

Неопределенный интеграл ∫ dx / (x² + 4x + 5) равен …

  • arcsin(x+2)+C
  • arctg(x+2)+C
  • sin(x+2)+C

 

Несобственный интеграл является … интегралом, если существует конечный предел соответствующего ему собственного интеграла

 

Общее решение уравнения y'+4y=0 имеет вид …

  • y = c₁ + e²ˣ
  • y = c₁e²ˣ + c₂e²ˣ
  • y = c₁cos2x + c₂sin2x

 

Общее решение уравнения y''+5y'-6y=0 имеет вид …

  • y=c₁e⁶ˣ+c₂e³ˣ
  • y=c₁e⁻⁶ˣ+c₂eˣ
  • y=c₁e⁻²ˣ+c₂e⁻³ˣ

 

Определенный интеграл ∫ (1 / √(x + 1))dx, x=0..2 равен …

  • 2√3-2
  • 2√3
  • -2√2

 

Определенный интеграл ∫ (x / √(1 + x))dx, x=0..3 равен …

  • 8/3
  • 3/8
  • 1/3

 

Определенный интеграл ∫ f(x)dx, x=2..2 равен …

 

Предел lim (x² − 2x) / (x² − 4), x⟶2 равен …

  • 0.5
  • 0.7
  • 0

 

При перестановке двух строк матрицы ее определитель …

  • меняет знак на противоположный
  • не меняет знак
  • в одних случаях меняет знак на противоположный, в других случаях – не меняет знак

 

Производная сложной функции y = √(x³ + 5x² – 3) имеет вид …

  • (3x² + 10x) / 2√(x³ + 5x² – 3)
  • (3x² − 10x) / √(x³ + 5x² – 3)
  • −(2x − 3) / √(x² – 3x + 17)

 

Производная функции у=3х³+2x²-5x+7 имеет вид …

·        9x²+4x-5

·        21x²-4x+5

·        -21x²-4x-5

 

Процесс нахождения первообразной для данной функции называют …

 

Пусть дан вектор a{−3, 7, 2}, тогда длина вектора 3a равна …

  • √550
  • √560
  • √558

 

Пусть дана матрица A = ((1, 2, 3), (2, 1, 3), (3, 2, 1)), тогда квадрат определителя этой матрицы будет равен …

 

Пусть дана матрица A = ((1, 2, 3), (2, 1, 3), (3, 2, 1)), тогда сумма миноров M₂₂ + M₃₃ равна …

·        -11

·        -12

·        -10

 

Пусть дана матрица A = ((12, −17), (−5, −9)), тогда ее определитель равен …

 

Пусть дана матрица A = ((2, 3), (1, −2)), тогда обратная матрица будет иметь вид …

  • ((3, 2), (−2, 1))
  • ((2/7, 3/7), (1/7, −2/7))
  • ((2, 1), (3, −2))

 

Пусть дана система уравнений A = {2x₁ + x₂ - 2x₃ = 9, 3x₁ - 2x₂ + x₃ = 2, x₁ + x₂ - 4x₃ = 11, тогда определитель |A| этой системы равен

  • 16
  • 17
  • 18

 

Пусть дана система уравнений A = {2x₁ + x₂ − 2x₃ = 9, 3x₁ − 2x₂ + x₃ = 2, x₁ + x₂ − 4x₃ = 11, тогда определитель |A₁| этой системы равен

  • 34
  • 35
  • 36

 

Пусть дана система уравнений A = {2x₁ + x₂ − 2x₃ = 9, 3x₁ − 2x₂ + x₃ = 2, x₁ + x₂ − 4x₃ = 11, тогда определитель |A₃| этой системы равен

  • -32
  • -33
  • -34

 

Пусть дана система уравнений A = {3x – 4y + z = 0, 2x + y – 3z = –5, x – 2y + z = 0, тогда данная система …

  • не имеет решений
  • имеет 1 решение
  • имеет 2 решения

 

Пусть даны векторы a{3, 4, 5} и b{6, 7, 8}, тогда сумма координат вектора a + b равна …

 

Пусть даны множества A={3,4,5} и B={7,6,5}, тогда единственный элемент множества A∩B равен …

 

Пусть даны множества A={3,4,5} и B={7,6,5}, тогда сумма всех элементов множества A∪B равна …

 

Пусть последовательность задана формулой xn=(-1)n, тогда разность первых трех ее членов равна …

 

Пусть уравнение плоскости задано точкой A(-2, 2, 8) и нормалью n(1, 2, 3), тогда коэффициент при переменной x в данном уравнении равен

 

Разность координат нормального вектора плоскости 3x-y+2z+2=0 равна …

 

Расположите выражения, известные для системы линейных уравнений {3x₁ + 2x₂ – x₃ = 2, x₁ – 3x₂ + 2x₃ = 3, 2x₁ + 4x₂ – 2x₃ = 4 в порядке «основная матрица системы, расширенная матрица системы, матрица неизвестных, матрица правой части»:

1 ((3, 2, –1), (1, –3, 2), (2, 4, –2))

2 ((3, 2, –1, 2), (1, –3, 2, 3), (2, 4, –2, 4))

3 (x₁, x₂, x₃)

4 (2, 3, 4)

 

Расположите данные выражения для функции z(x;y)=3x³+7xy-5x+3y⁴ в последовательности «частная производная по x первого порядка, частная производная по x второго порядка, частная производная по y первого порядка»:

1 9x²+7y-5

2 18x

3 7x+12y³

 

Расположите действия нахождения обратной матрицы в логическом порядке:

1 найти определитель исходной матрицы

2 найти транспонированную матрицу к исходной

3 найти алгебраические дополнения

4 составить обратную матрицу

 

Расположите дифференциальные уравнения в последовательности «дифференциальное уравнение 1-го порядка, линейное однородное дифференциальное уравнение 2-го порядка, линейное неоднородное дифференциальное уравнение 2-го порядка»:

1 2x+ y'-y=0

2 y''+2y'+3y=0

3 y''+2y'+3y=x²

 

Расположите длины векторов a{1, 2, 3}, b{−1, 2, 4} и c{3, −4, 5} в порядке возрастания:

1 │a│

2 │b│

3 │c│

 

Расположите значения данных интегралов в порядке убывания:

1 ∫ 2x²dx, x=1..2

2 ∫ (x³ − x²)dx, x=0..2

3 ∫ dx / x, x=1..-e

 

Расположите значения производных для функций в порядке «y=sinx,y=cosx,y=lnx»:

  • y' = cosx
  • y' = −sinx
  • y' = 1/x

 

Расположите матрицы в порядке «нижняя треугольная, квадратная, верхняя треугольная, неквадратная»:

1 ((3, 0, 0), (3, 3, 0), (3, 3, 3))

2 ((2, 2, 2), (2, 2, 2), (2, 2, 2))

3 ((2, 2, 2), (0, 2, 2,), (0, 0, 2))

4 ((1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1))

 

Расположите прямые y₁, y₂ и y₃, заданные уравнениями, в порядке убывания их угловых коэффициентов:

1 y₃ = -9

2 y₁ = -7x+1

3 y₂ = -8x+2

 

Расположите точки A(0,7,2), B(1,2,3) и C(-5,7,9) в порядке принадлежности плоскостям «x-y+1=0,4x-26y+33z-95=0, -17x+5y+18z-71-0»

1 B

2 C

3 A

 

Расположите числа в порядке принадлежности множествам «иррациональных чисел, рациональных чисел, целых чисел, натуральных чисел»:

1 √2

2 1/2

3 -2

4 2

 

Расстояние от точки A(2,1) до прямой 3x-4y-3=0 равно …

 

Расстояние от точки A(2,3,-1) до плоскости 2x-y+3z=2 равно …

·        4/√14

·        2/√14

·        -4/√15

 

Результат вычисления интеграла ∫ x⁴dx, x=1..3 составляет

·        1/5

·        243

·        242/5

 

Решение уравнения y'=5x+2 имеет вид …

  • 5x²/2 - 2x + C
  • -5x²/2 - 2x + C
  • 5x²/2 + 2x + C

 

Решением системы уравнений A = {2x₁ + x₂ − 2x₃ = 9, 3x₁ − 2x₂ + x₃ = 2, x₁ + x₂ − 4x₃ = 11, будет …

·        (2, 1, −2)

·        (−2, 1, −2)

·        (2, 1, 2)

 

Скалярное произведение векторов a{7, 8, 9}, b{−3, 4, −5} равно …

 

Сопоставьте матричные уравнения и их решения

A. A∙X=B

B. X∙A=B

C. A∙X∙C=B

D. X=A-1∙B

E. X=B∙A-1

F. X=A-1∙B∙C-1

 

Сумма координат вектора a = −3I + 2j + 5k равна …

 

Сумма координат нормального вектора плоскости 3x-2y+z-1=0 равна …

 

Сумма координат середины отрезка с концами в точках A(-3,-2,5) и A(5,2,-7) равна …

 

Сумма координат точки пересечения прямых y₁=2x+1 и y₂ =3x-2 равна …

 

Сумма элементов второй строки матрицы, обратной к матрице A = ((2, 2, 1), (1, 3, 1), (1, 0, 0)) равна …

 

Точка x₀ называется точкой минимума функции y=f(x), если для всех точек x≠x₀ из некоторой окрестности точки x₀ выполняется …

  • неравенство f(x)<f(x₀)
  • неравенство f(x)>f(x₀)
  • равенство f(x)=f(x₀)

 

Три вектора образуют базис в пространстве тогда и только тогда, когда эти векторы …

  • не коллинеарны
  • не компланарны
  • компланарны

 

Упорядочьте дифференциальные уравнения от первого до третьего порядка:

1 y' +3 y=x²

2 y''=xy

3 y'''-3y'=0

 

Уравнение … является каноническим уравнением прямой

·        3x+2y-5=0

·        (x – 2)/3 = (y + 1)/2

·        {x = 3t + 1; y = t – 1

 

Уравнение y' +2y=4 при условии y(0)=5 имеет частное решение…

  • y=3e⁻²ˣ+5
  • y=3e⁻²ˣ+2
  • y=3e⁻²ˣ

 

Уравнение вида y' +p(x)y=q(x)⋅уn называется уравнением …

·        Бернулли

·        Пифагора

·        Коши

 

Уравнение прямой, проходящей через точки А(5,-6) и В(-7,0), имеет вид …

·        y = -0,5x-3,5

·        y = -0,5x+3,5

·        y = 0,4x+2,2

 

Условием существования двух действительных корней характеристического уравнения дифференциального уравнения является то, что дискриминант характеристического уравнения …

  • больше нуля
  • равен нулю
  • меньше нуля

 

Установите соответствие между взаимным расположением прямых y₁=k₁ x+b₁ и y₂=k₂ x+b₂ на плоскости и условием этого расположения:

A. Прямые параллельны

B. Прямые перпендикулярны

C. Прямые совпадают

D. k₁=k₂,b₁≠b₂

E. k₁∙k₂=-1

F. k₁=k₂,b₁=b₂

 

Установите соответствие между действиями над матрицами A = ((1, −7), (4, 9)) и B = ((8, −4), (−5, 0)) и результатами этих действий:

A. A+B

B. A-B

C. A⋅B

D. B⋅A

E. ((9, −11), (−1, 9))

F. ((−7, −3), (−5, 0))

G. ((−7, −3), (9, 9))

H. ((−8, −92), (−5, 35))

 

Установите соответствие между интегралом элементарной функции и его значением:

A. ∫ eˣ dx

B. ∫ cosx dx

C. ∫ dx / sin²x

D. eˣ+C

E. sinx+C

F. -ctgx+C

 

Установите соответствие между линейными операциями над векторами a{a₁, a₂, a₃} и b{b₁, b₂, b₃} и результатами этих операций:

A. a + b

B. b − a

C. kb

D. {a₁ − b₁, a₂ − b₂, a₃ − b₃}

E. {b₁ − a₁, b₂ − a₂, b₃ − a₃}

F. {kb₁, kb₂, kb₃}

 

Установите соответствие между общим видом дифференциального уравнения и методом его решения:

A. f(y)dy=f(x)dx

B. f₁ (x)g(y)dx=f₂ (x)dy

C. P(x,y)dx=Q(x,y)dy

D. проинтегрировать обе части уравнения

E. разделить переменные и проинтегрировать обе части уравнения

F. применить подстановку y=ux,u=f(x)

 

Установите соответствие между операциями над матрицами и их характеристиками

A. Сложение матриц

B. Вычитание матриц

C. Умножение матрицы на число

D. сложение соответствующих элементов матриц

E. вычитание соответствующих элементов матриц

F. умножение всех элементов матрицы на число

 

Установите соответствие между понятием и соответствующей формулой:

A. Приращение функции в точке x₀

B. Дифференциал функции

C. Производная функции в точке x₀

D. Δy = f(x₀ + Δx) − f(x₀)

E. dy = f'(x)dx

F. f'(x₀) = lim Δy / Δx, Δx⟶0

 

Установите соответствие между правой частью нелинейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами и его частным решением

A. f(x)=aemx, m≠k₁≠k₂

B. f(x)= aemx, m=k₁

C. f(x)=ax²+bx+c

D. ỹ = Aemx

E. ỹ = Axemx

F. ỹ = Ax² + Bx + C

 

Установите соответствие между свойствами пределов и их значениями:

A. lim c, x⟶x₀

B. lim (f(x) ⋅ g(x)), x⟶x₀

C. lim (f(x) − g(x)), x⟶x₀

D. 0

E. lim f(x), x⟶x₀ ⋅ lim g(x), x⟶x₀

F. lim f(x), x⟶x₀ − lim g(x), x⟶x₀

 

Установите соответствие между способом задания прямой в пространстве и ее уравнением:

A. Общее уравнение прямой

B. Точки M₁ (x₁, y₁, z₁ ) и M₂ (x₂, y₂, z₂ ) лежат на прямой

C. Известны напрявляющий вектор l(m, n, p) и точка M(x₀, y₀, z₀)

D. {A₁x + B₁y + C₁z = 0, A₂x + B₂y + C₂z = 0

E. (x − x₁) / (x₂ − x₁) = (y − y₁) / (y₂ − y₁) = (z − z₁) / (z₂ − z₁)

F. (x − x₀) / m = (y − y₀) / n = (z − z₀) / p

 

Установите соответствие между функцией двух переменных и ее частной производной по переменной x:

A. z=3x²+5x-2y

B. z=x²-x+1

C. z=2x³-3x

D. zx' =6x+5

E. zx' =2x-1

F. zx' =6x-3

 

Функция … является нечетной

  • y=cosx
  • y=x^6
  • y=x^5

 

Функции y₁=y₁ (x) и y₂=y₂ (x) называются линейно … на (a,b), если равенство α₁y₁+α₂y₂+0 выполняется тогда и только тогда, когда хотя бы одно из чисел α₁ или α₂ отлично от нуля

 

Функция нескольких переменных является дифференцируемой, если …

  • существует полное приращение функции
  • функция непрерывна по одному аргументу
  • существует полный дифференциал функции

 

Функция f(x; y) = (2x - y²) / (x² + y²) является …

  • однородной
  • неоднородной
  • условной

 

Функция k=3x+5y-2z+1 является функцией …

  • одной переменной
  • трех переменных
  • четырех переменных

 

Функция у = f(x) называется … функцией на множестве D, если для любых x₁, x₂ ϵ D из неравенства x_1<x_2 следует неравенство f(x_1)>f(x_2)

 

Целой положительной степенью Am квадратной матрицы A называется … m матриц, равных A

 

Частная производная по переменной x функции z(x;y)=5x⁴ y² равна …

  • 20x³y²
  • 20x²y²
  • 20x²y⁴

 

Частная производная ∂z(x; y)/∂y функции z(x; y) = y − 3x³ + 2 равна …

·        3

·        1

·        2

 

Числа x и y в разложении вектора a = xe₁ + ye₂ относительно осей e₁ и e₂ называются … вектора a

 

Число, равное наивысшему порядку минора матрицы, называется … матрицы

  • рангом
  • определителем
  • базисом

 

 

КОМПЕТЕНТНОСТНЫЙ ТЕСТ

 

Дан вектор a = {2, 3, 2}.

Найдите вектор x, коллинеарный вектору a и удовлетворяющий условию (x, a) = 34.

  • x = {4, 3, 4}
  • x = {7, 6, 7}
  • x = {4, 6, 4}

 

Дан матричный многочлен f(A) = 3A²– 5A + 2. Нужно вычислить его значение.

Приведите метод решения.

  • Найти значение A², умножить на 3, умножить матрицу А на -5, сложить полученные матрицы, прибавить к ней матрицу с элементами главной диагонали, равной 2.
  • Найти значение A², умножить на 3, умножить матрицу А на -5, сложить элементы полученных матриц и к данному значению добавить 2.
  • Найти обратную матрицу, умножить ее на 3, умножить матрицу А на -5, сложить элементы полученных матриц и к данному значению добавить 2.

 

Дан определенный интеграл ∫ (√x /(1 + √x))dx, x=0..1.

Вычислите его значение.

  • √(3)π / 3 − ln2
  • 1/3
  • 2ln2 − 1

 

Дана матрица |A| = |(1, 0, 1), (2, 3, 5), (0, 4, 8)|.

Существует ли обратная матрица для данной матрицы и почему?

  • Существует, так как ее определитель отличен от нуля.
  • Не существует, так как ранг матрицы равен 3.
  • Существует, так как данную матрицу можно транспонировать.

 

Дана матрица А = ((1, 0, 1), (2, 3, 5), (0, 4, 8))

Чему равен определитель данной матрицы? Будет ли он совпадать с определителем транспонированной матрицы?

  • Определитель равен 12, будет совпадать.
  • Определитель равен 12, совпадать не будет.
  • Определитель равен 24, будет совпадать.
  • Определитель равен 24, совпадать не будет.

 

Дана система уравнений {x₁ + 2 ⋅ x₂ − x₃ = 1, −3 ⋅ x₁ + x₂ + 2 ⋅ x₃ = 0, x₁ + 4 ⋅ x₂ + 3 ⋅ x₃ = 2

Решая уравнение методом Гаусса, какие действия необходимо совершить?

  • Записать расширенную матрицу системы; выполнить алгебраические преобразования; получить эквивалентную систему уравнений; вычислить значение свободных неизвестных.
  • Записать расширенную матрицу системы; выполнить элементарные преобразования; получить эквивалентную систему уравнений; совершить обратный ход Гаусса, вычислив значения неизвестных.
  • Записать расширенную матрицу системы; выполнить элементарные преобразования; получить эквивалентную систему уравнений; вычислить значения неизвестных путем подбора.

 

Дана система уравнений {x₁ + 2 ⋅ x₂ - x₃ = 1, −3 ⋅ x₁ + x₂ + 2 ⋅ x₃ = 0, x₁ + 4 ⋅ x₂ + 3 ⋅ x₃ = 2.

Сколько решений имеет эта система уравнений и почему?

  • Система имеет 1 решение, так как система совместна.
  • Система имеет 3 решения, так как в системе 3 неизвестных.
  • Система имеет бесконечное число решений, так как система несовместна.

 

Дана функция f(x) = arccos(x/2 − 1).

Найдите область определения функции.

  • x ∈ (0; 4).
  • x ∈ [0; 4).
  • x ∈ [0; 4].

 

Дана функция f(x) = lg(3x − 1) + 2lg(x + 1).Найдите область определения функции.

  • x ∈ ( 1/3; +∞).
  • x ∈ (3; +∞).
  • x ∈ ( 1/4; +∞).

 

Дана функция z = x²siny, z''xx.

Найдите частные производные второго порядка для этой функции.

  • -6x² siny.
  • -3x² siny.
  • -x² siny.

 

Дана функция: z=x²-2xy²+y³. Найдите частные производные второго порядка для этой функции.

  • -6x+7y.
  • -4x+8y.
  • -4x+6y.

 

Дана функция, заданная неявно: 2x² + 3y² = 9x.

Найдите производную данной функции

  • (2x + 3y) / 9
  • (9 - 4x) / 6y
  • (9 - 2x) / 3

 

Дана функция, заданная параметрически: {x = 5t² + 3, y = t⁷ − 8.

Найдите производную первого порядка.

  • y'=0,35t³.
  • y'=0,7t³.
  • y^'=0,7t⁵.

 

Дано дифференциальное уравнение: y'+2y=4x.Решите это уравнение.

  • 5x-2+C⋅e⁻²ˣ.
  • 4x-1+C⋅e⁻²ˣ.
  • 2x-1+C⋅e⁻²ˣ.

 

Дано линейное дифференциальное уравнение второго порядка: y''-4y'+5y=0.

Решите это уравнение

  • y = 2c₁eˣ + c₂ ⋅ xeˣ.
  • y = 3c₁eˣ + 2c₂ ⋅ xeˣ.
  • y = c₁eˣ + c₂ ⋅ xeˣ.

 

Дано линейное дифференциальное уравнение второго порядка: y''-4y'+5y=0.

Решите это уравнение.

  • y = c₁e²ˣcos5x + c₂e²ˣsin5x.
  • y = c₁e²ˣcos3x + c₂e²ˣsin3x.
  • y = c₁e²ˣcos2x + c₂e²ˣsin2x.

 

Даны векторы p и a.

Найдите орт вектора p (вектор единичной длины и того же направления, что вектор p) перпендикулярный вектору a и оси OX ⋅ pª ⊥ a = {3, 6, 8} и pª ⊥ OX.

  • pª = ±(0; −0,8; 0,6}
  • pª = ±(0; −0,6; 0,6}
  • pª = ±(0; −0,8; 0,3}

 

Даны следующие матрицы: А₂ = ((1, 2), (3, 6)), В₂ = ((2, 6), (−1, 3)). Над данными матрицами было произведено алгебраическое действие, в результате которого получена матрица C₂ = ((3, 8), (2, 9)).

Какое алгебраическое действие было произведено?

  • Умножение матрицы на матрицу
  • Сложение матрицы с матрицей
  • Разность матриц

 

Даны следующий матрицы: A₂ = ((1, 2), (3, 6)), B₂ = ((2, 6), (−1, 3)). Над данными матрицами было произведено алгебраическое действие, в результате которого получена матрица C₂ = ((3, 8), (2, 9)).

Какое алгебраическое действие было произведено?

  • Умножение матрицы на матрицу.
  • Сложение матрицы с матрицей.
  • Вычитание матрицы из матрицы.

 

Известно, что прямая проходит через точки A(1; 1) и B(–2; 3). Найти угловой коэффициент k данной прямой и ординату b точки ее пересечения с осью Oy.

  • k = –2/3; b = –5/3.
  • k = –2/6; b = –5/6.
  • k = –4/6; b = –5/6.

 

Параллелепипед построен на векторах a = 3i + 2j − 5k, b = i − j + 4k, c = i − 3j + k.

Вычислите высоту h данного параллелепипеда, если за основание взят параллелограмм, построенный на векторах a и b.

  • h = 49√323 / 323
  • h = 49√323 / 3
  • h = 4√323 / 323

 

Плоскости π₁ и π₂ заданы уравнениями 2x − y + 3z + 5 = 0 и x / 1 + y / −2 + z / 3 = 1.

Определите угол φ между данными плоскостями.

  • φ = arccos(9√14/12)
  • φ = arccos(6√14/16)
  • φ = arccos(3√14/14)

 

Прямые 15x + 36y –105 = 0 и 5x + 12y + 30 = 0 параллельны. Найдите расстояние между данными прямыми.

  • Расстояние между данными прямыми равно 9.
  • Расстояние между данными прямыми равно 6.
  • Расстояние между данными прямыми равно 5.

 

Фигура, образованная путем вращения вокруг оси Oх, ограничена линиями y=4x-x²,y=x. Найдите объем данного тела.

  • π/2
  • 108π/5
  • 15/2

 

 

Список литературы
  • Тема 7. Предел функции
  • Тема 8. Дифференциальное исчисление функции одной переменной
  • Тема 9. Интегральное исчисление функции одной переменной
  • Тема 10. Функции нескольких переменных
  • Тема 11. Обыкновенные дифференциальные уравнения порядка
  • Тема 12. Линейные дифференциальные уравнения высших порядков
  • Заключение
  • Анкета обратной связи
  • Итоговая аттестация
Вам подходит эта работа?
Похожие работы
Другие работы автора
Менеджмент
Тест Тест
6 Ноя в 20:26
130 +10
1 покупка
Налоги, налогообложение и налоговое планирование
Тест Тест
6 Ноя в 15:30
35 +1
1 покупка
Физкультура и спорт
Тест Тест
6 Ноя в 14:49
107 +1
1 покупка
Гражданское право
Тест Тест
6 Ноя в 13:52
48 +1
0 покупок
Математические методы в психологии
Тест Тест
26 Окт в 17:28
42 +2
4 покупки
Английский язык
Тест Тест
21 Окт в 23:22
149 +5
2 покупки
Английский язык
Тест Тест
13 Окт в 19:37
141 +2
2 покупки
Экономика предприятия
Тест Тест
13 Окт в 18:40
82 +2
0 покупок
Темы журнала
Показать ещё
Прямой эфир