Росдистант, 2024 год
Алгебра и начала математического анализа_ПК-2024-б
Вступительный экзамен. Тест 4 (15.05.2024)
25 вопросов с ответами / Результат - 96 баллов
Полный список вопросов представлен в демо-файлах!!!
+++++++++++++++++++++++++++++++++++++++++++++++++++++
Если вам нужна гарантированная сдача на высокий балл, пишите в личку:
https://studwork.ru/info/86802
+++++++++++++++++++++++++++++++++++++++++++++++++++++
Вопросы (расположены в алфавитном порядке, работает поиск - Ctrl+F):
Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места. Ответ дайте в виде конечной десятичной дроби.
Ответ:
Вероятностью события называется:
Сумма числа исходов, благоприятствующих появлению события и общего числа исходов
Отношение числа исходов, благоприятствующих появлению события к общему числу исходов
Произведение числа исходов, благоприятствующих появлению события на общее число исходов
Мера возможности произойти событию при определенных условиях
Вычислите определенный интеграл ∫₂⁴ xdx
Ответ:
Вычислить lim(x→∞) (1–x⁴) / (1–x²–6x⁴)
– 1/6
1
1/6
¥
Дано, что |a| = 4, |b| = 1, /_(a,b) = 60°. Найдите cos α, α – угол между векторами a – b и b.
1/√15
1/√13
0,07
0,08
Длина вектора AB ={3,0,4} равна…(ответ дайте в виде числа)
Ответ:
Если в квадратной матрице все элементы главной диагонали равны единице, а все остальные элементы нулевые, то такая матрица называется
вектор-строкой
вектор- столбцом
единичной
нулевой
Записать в тригонометрической форме число (√3 – i)
2 (cos(–π/6) – i sin(–π/6))
2 (cos(–π/6) + i sin(–π/6))
(cos(–π/6) + i sin(–π/6))
(cos(–π/6) – i sin(–π/6))
Из нижеперечисленных формул выберите верные…
(x ͫ )¹ = mx ͫ ⁻¹
(lnx)¹ = 1/x
(ex)¹ = ex
(ax)′ = ax
(tgx)′ = 1/cosx
Координаты основания перпендикуляра, проведённого из точки А(2;3;4) на координатную плоскость XOY ….
(2;0;4)
(2;0;0)
(0;3;4)
(2;3;0)
Координаты основания перпендикуляра, проведённого из точки А(2;3;4) на координатную плоскость XOZ ….
(2;0;4)
(2;0;0)
(0;3;4)
(2;3;0)
Матрица А вырождена тогда и только тогда, когда
определитель матрицы не равен нулю
существует обратная матрица A⁻¹
определитель матрицы равен нулю
сумма элементов матрицы равна нулю
Медиана значений из ряда данных: 37, 42, 35, 58, 33, 38, 51 равна ___ (ответ запишите числом).
Ответ:
Найдите интеграл ∫(3 – 2x)⁷ dx
– 1/8 (3 – 2x)⁸ + C
– 1/16 (3 – 2x)⁸
– 1/16 (3 – 2x)⁸ + C
(3 – 2x)⁸ +C
Найдите интеграл ∫ sin(x/3) dx
3 cos(x/3) + C
– cos(x/3) + C
– 1/3 cos(x/3) + C
– 3 cos(x/3) + C
Найдите точку минимума функции y = x³ – 3x² + 2. Ответ запишите в виде числа
Ответ:
Областью определения функции y = √x² – 5x + 6 является…
(– ∞; –2] U [3;+∞)
(2; 3)
(– ∞; 2] U [3;+∞)
[–2; 3]
Орт вектора b ={4,3,1}имеет вид….
3/26
4/26
1/√26
(4/√26; 3/√26; 1/√26)
1/26
Представьте число z=(– 1 – i √3) в тригонометрической форме
z = 2 (cos(– 2π/3) + i sin(– 2π/3))
z = 5 (cos(– 2π/3) + i sin(– 2π/3))
z = 4 (cos(– 2π/3) + i sin(– 2π/3))
z = 3 (cos(– 2π/3) + i sin(– 2π/3))
Пусть множество А – множество четных чисел из интервала (3;10), В – множество делителей числа 24. Найдите разность B\A.
{1; 2; 3; 12; 24}
{1; 2; 3; 4; 6; 8; 12; 24}
∅
{4; 6; 8}
Разность между средним арифметическим и медианой значений из ряда данных: 37, 42, 35, 58, 33, 38, 51 равна ___ (ответ запишите числом).
Ответ:
Решением уравнения x² + 10x + 50 = 0 являются числа
– 5 + 5i, – 5 – 5i
– 2 + i, – 2 – i
2 + i, 2 – i
5 + 5i, 5 – 5i
Система
{ x – y – 3z = 1,
2x + y – z = 0,
x – 5y = 2
имеет бесконечно много решений, в каждом из которых z = 0
имеет бесконечно много решений, в каждом из которых y = 1
имеет единственное решение
не имеет решений
Сколько различных плоскостей можно провести через 10 точек, если никакие три из них не лежат на одной прямой и никакие четыре точки не лежат в одной плоскости? Ответ дайте в виде числа.
Ответ:
Смешанное произведение векторов a = i – j + 2k , b = 3i + 5j c = 5i + 3j + 4k равно….. (ответ дайте в виде числа)
Ответ: