Нейронные сети (Темы 1-11) тест с ответами Синергия/МОИ/ МТИ /МОСАП

Раздел
Программирование
Тип
Просмотров
137
Покупок
2
Антиплагиат
Не указан
Размещена
18 Ноя 2023 в 23:10
ВУЗ
МФПУ Синергия / Московский открытый институт (МОИ) / Московский технологический институт (МТИ) / МОСАП
Курс
Не указан
Стоимость
200 ₽
Демо-файлы   
1
jpg
Результат 90 баллов из 100 Результат 90 баллов из 100
76.6 Кбайт 76.6 Кбайт
Файлы работы   
1
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
pdf
Нейронные сети (ОТВЕТЫ)
628.6 Кбайт 200 ₽
Описание

22 вопроса с ответами

Последний раз тест был сдан на 90 баллов из 100 "Отлично".

Год сдачи -2023.

После покупки Вы получите файл с ответами на вопросы которые указаны ниже:

ПО ВСЕМ ВОПРОСАМ - ПИШИТЕ В ЛИЧНЫЕ СООБЩЕНИЯ

Оглавление

1. Нейронные сети бывают следующих видов:

*Полносвязные и рекуррентные

*Рекуррентные, сверточные и трансформеры

*Рекуррентные, сверточные, полносвязные и трансформеры

2. Задача классификации – это задача

*Обучения с учителем

*Обучения без учителя

*Обучения с подкреплением

3. Обучение нейронной сети – это применение алгоритма оптимизации для решения задачи

*Минимизации средней нормы градиента эмпирического риска по весам модели

*Минимизации эмпирического риска

*Минимизации средней нормы матриц весов модели

4. Отметьте верные высказывания о функциях активации:

*Функция активации сигмоида лежит в диапазоне [0,1] и может быть интерпретирована как вероятность, а потому часто используется для решения задач бинарной классификации. Функция ReLU - кусочно-линейная

*Функция Leacky ReLU - всюду дифференцируема. Популярная функция активации гиперболический тангенс может быть использована, как решающая функция для задачи регрессии. Производная сигмоидальной функции не выражается аналитически через значение самой функции в данной точке

* Все функции активации взаимозаменяемы вследствие того, что имеют одну и ту же область значений и область определения

5. Идея Momentum состоит в:

*Вычислении градиента в точке, к которой алгоритм должен сойтись на текущем шаге, согласно посчитанному моментному члену, а не в той точке, откуда алгоритм производит шаг

*Использовании идеи физической инерции посредством добавления моментных членов, "скоростей"

*приближенном, а значит - более быстром ("моментальном") вычислении градиентов в текущей

6. Нейронные сети, наиболее часто применяющиеся в CV – это

*Полносвязные

*Сверточные

*Рекуррентные

7. Задачу машинного обучения можно представить в виде последовательности выполнения действий по выбору оптимальной решающей функции f из многопараметрического семейства F. Задача обучения сводится к задаче оптимизации на этапе:

*Выбора семейства F

*Оценки качества выбранной функции f из семейства F

*Поиска наилучшей функции из семейства F

8. Производная сигмоиды выражается через саму сигмоиду аналитически, как

*sigm’ = sigm(1 - sigm)

*sigm’ = 5sigm^(5)

*sigm’ = 100sigm/sin(sigm)

9. Метод подбора адаптированного learning rate на основе оценки исторических градиентов:

*Nesterov Momentum

*RMSProp

*Adagrad

10. При прямом проходе через Feed Forward Neural Network:

*Происходит обновление весов модели на основе градиентов, посчитанных на предыдущей итерации

*Происходит выстраивание архитектуры модели посредством подбора числа слоев и их размеров

*Сигнал передается посредством последовательного матричного умножения и применения нелинейных функций активации

11. Архитектура полносвязной нейронные сети основана на идее

*обобщения низкоуровневых признаков и генерирования на их основе более высокоуровневых

*Построения разделяющей гиперплоскости

*Минимизации лосс-функции без использования градиентных методов

12. Начальная инициализация весов нейросети:

*Должна быть константной для того, чтобы результаты обучения нейросети на одной и той же трейнинговой выборке были воспроизводимыми

*Должна быть случайной для того, чтобы модель могла обучиться, не зануляя градиенты на определенном шаге, причем такой, что дисперсия сигнала не будет изменяться при проходе через слои нейросети.

*Может быть любой

13. Лучший способ борьбы с переобучением:

*Изменение архитектуры модели

*Регуляризации

*Увеличение количества данных

14. Наиболее популярный на текущий момент метод оптимизации, основанный на идее использования двух моментных членов, предложенный в 2015 году:

*ADAM

*Adagrad

*Adadelta

15. Обучение с учителем характеризуется

*Целью обучить агента принимать оптимальные решения в среде

* Отсутствием размеченной выборки

*Наличием размеченной выборки

16. Градиентные методы оптимизации

*Представляют собой итерационные алгоритмы

*Аналитически ищут решение задачи оптимизации

*Вопреки названию, не используют градиенты

17. Условия Каруша-Куна-Таккера применимы для решения:

*Любой задачи оптимизации

*Задачи выпуклой оптимизации

*Задачи оптимизации произвольной функции на выпуклом множестве Q

18. Все описанные в лекции алгоритмы обладают общим свойством. Каким?

*Для всех требуется вычисление матрицы Гессе оптимизируемой функции

*Для всех требуется вычисление градиентов оптимизированной функции

*Для всех требуется подсчет значения оптимизируемой функции в данной точке

19. Функции активации в нейронных сетях:

*Нелинейны (глобально) и вносят неоднородность в сигнал при прямом проходе

*Линейны и нужны для проверки работоспособности модели

*Активируют нейросеть в разных режимах работы

20. Переобучение – это эффект, возникающий при

*Излишней сложности модели по отношению к сложности обучающей выборки, из-за чего происходит “заучивание” данных

*Слишком долгом обучении модели, из-за чего она теряет свою предсказательную способность вследствие увеличения энтропии весов

*Усталости специалиста по машинному обучению от того, что его модели слишком долго учатся

21. Алгоритм Backpropagation:

*Состоит в случайном подборе весов модели до тех пор, пока не будет достигнут оптимальный набор параметров, минимизирующий ошибку

*Используется только для оптимизации полносвязных нейросетей

*Последовательном вычислении градиентов по весам модели, начиная с последнего слоя, по предактивациям соответствующего слоя и градиентам по весам следующего

22. Функции активации в нейронных сетях:

*Нелинейны (глобально) и вносят неоднородность в сигнал при прямом проходе

*Линейны и нужны для проверки работоспособности модели

*Активируют нейросеть в разных режимах работы

Список литературы

1 Введение в нейронные сети

2 Полносвязные нейронные сети

3 Элементы теории оптимизации

4 Обучение нейронных сетей

5 Сверточные нейронные сети

6 Рекуррентные нейронные сети. 1 Часть

7 Рекуррентные нейронные сети. 2 Часть

8 Tips and Tricks

9 Pytorch

10 Векторные представления слов

11 Нейронные сети-трансформеры

Вам подходит эта работа?
Похожие работы
Обучение нейронных систем
Тест Тест
6 Янв в 12:54
28
0 покупок
Обучение нейронных систем
Статья Статья
4 Янв в 10:48
18
0 покупок
Обучение нейронных систем
Тест Тест
20 Ноя 2024 в 12:28
50
1 покупка
Обучение нейронных систем
Тест Тест
7 Ноя 2024 в 11:24
49
2 покупки
Обучение нейронных систем
Тест Тест
24 Окт 2024 в 21:31
96 +1
1 покупка
Другие работы автора
Премиум
Психология
Тест Тест
20 Янв в 01:51
36
1 покупка
Премиум
Физкультура и спорт
Тест Тест
18 Янв в 18:36
32
2 покупки
Премиум
Психология спорта
Тест Тест
18 Янв в 17:03
19 +1
1 покупка
Премиум
Физкультура и спорт
Тест Тест
18 Янв в 16:21
27
0 покупок
Премиум
Делопроизводство и документооборот
Тест Тест
12 Янв в 03:16
207
9 покупок
Премиум
Конституционное право
Тест Тест
7 Янв в 02:33
219
4 покупки
Премиум
Информационная безопасность
Тест Тест
3 Янв в 12:30
172
2 покупки
Премиум
Электроэнергетика
Тест Тест
28 Дек 2024 в 02:54
88
3 покупки
Премиум
Культурология
Тест Тест
25 Дек 2024 в 04:23
331
3 покупки
Премиум
Основы российской государственности
Тест Тест
24 Дек 2024 в 02:54
410
9 покупок
Премиум
Государственное и муниципальное управление
Тест Тест
18 Дек 2024 в 17:18
218
7 покупок
Премиум
Государственное и муниципальное управление
Тест Тест
18 Дек 2024 в 16:57
172
5 покупок
Премиум
Web-программирование
Тест Тест
6 Дек 2024 в 16:29
126 +1
4 покупки
Премиум
Юриспруденция
Тест Тест
29 Ноя 2024 в 03:52
292
5 покупок
Темы журнала
Показать ещё
Прямой эфир