Выполнена 25 из 25.
Цель занятия: формирование умений решать текстовые задачи; применять математические методы для решения профессиональных задач; закрепление навыков решения простейших статистических задач; закрепление навыков применять правила приближенных вычислений; закрепление навыков работы с основными свойствами геометрических фигур на плоскости и в пространстве.
Задание 1. (Максимальное количество баллов – 3 балла)
Заполните позицию «Необходимо определить» в графе «Интерпретация модели» таблицы
«Виды моделирования при решении текстовых задач».
Задание 2. (Максимальное количество баллов – 3 балла)
Решите задачу, используя диаграммы Эйлера-Венна.
При выборе кружков для детей оказалось, что 60 % родителей желают, чтобы их ребенок посещал кружок рисования, 50 % предпочли занятия по гимнастике, 50% отметили, что выбрали бы занятия музыкой. При этом 30 % родителей предпочитают, чтобы их дети посещали занятия и по рисованию, и по гимнастике, 20 % сделали выбор в пользу занятий по гимнастике и музыке, а 40 % родителей пожелали бы, чтобы ребенок рисовал и занимался хоровым пением, и только 10 % из них высказались за посещение детьми всех кружков.
Задание 3 (максимальное количество баллов – 5 баллов)
Выполните задания с учетом исходных данных, подробно описывая ход решения.
а) Постройте статистический ряд распределения частот.
б) Постройте полигон распределения.
в) Вычислите выборочную среднюю, дисперсию, моду, медиану.
г) Постройте выборочную функцию распределения.
Задание 4 (максимальное количество баллов - 4 балла)
Решите примеры, связанные с погрешностями, подробно описывая ход решения.
a) Округлите число 4,45575250 до шести, пяти, четырех, трех, двух и одного десятичных знаков; до целого числа.
b) Число 12,75 определено с относительной погрешностью 0,3, %. Найдите абсолютную погрешность округления.
c) Определите верные и сомнительные цифры числа 13,27 ± 0,03.
Задание 5 (максимальное количество баллов – 3 балла)
Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением.
На стороне AC треугольника ABC отмечена точка D так, что AD=3см, DC=10см. Площадь треугольника ABC равна 39 см2. Найдите площадь треугольника ABD.
Задание 6 (максимальное количество баллов – 4 балла)
Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением.
Биссектриса угла A параллелограмма ABCD пересекает его сторону BC в точке F. Найдите площадь параллелограмма ABCD, если BF=4 см, FC=2 см, а угол ABC равен 150 градусов.
Задание 7 (максимальное количество баллов – 3 балла
Решите задачу, подробно описывая ход рассуждений. Решение сопроводите графическим отображением.
Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 см и 8 см, а боковое ребро призмы равно 12 см.