Полное описание заданий с исходными данными представлено в демо-файле "Описание работы".
Если вам нужна работа с другими исходными данными (другой вариант), то напишите мне в личку Marka37 (https://studwork.ru/mail/36969) и обсудим подробности.
Работа выполнена в 2020 году. Объем работы – 30 стр. Оформление в Word. Шрифт – 14, интервал – 1,5.
Работа сделана с подробными пояснениями к решению.
Задание 1
Применение методов линейного программирования.
Из двух видов сырья необходимо составить смесь, в состав которой должно входить не менее указанных единиц химического вещества А, В и С соответственно. Цена 1 кг сырья каждого вида, а также количество единиц химического вещества, содержащегося в 1 кг сырья каждого вида, указаны в таблице. Составить смесь, имеющую минимальную стоимость.
Требуется:
1) построить математическую модель задачи;
2) выбрать метод решения и привести задачу к канонической форме;
3) решить задачу (двойственным симплекс-методом);
4) дать геометрическую интерпретацию решения;
5) проанализировать результаты решения.
Вещество Кол-во ед. вещества, содержащегося в 1 кг сырья каждого вида Минимальное содержание вещества, ед.
I II
А - 5 10
В 4 2 28
С 2 5 30
Цена 1 кг сырья, ден. ед. 4 10
Задание 2
Методы решения матричных игр.
Отрасли А и В осуществляют капитальные вложения в четыре объекта. С учетом особенностей вкладов и местных условий прибыль отрасли А в зависимости от объема финансирования выражается элементами матрицы С. Для упрощения задачи принять, что убыток отрасли В равен прибыли отрасли А. Найти оптимальные стратегии отраслей.
Требуется:
1) свести исходные данные в таблицу и найти решение матричной игры в чистых стратегиях, если оно существует (в противном случае см. следующий п. 2);
2) упростить платежную матрицу;
3) составить пару взаимно двойственных задач, эквивалентную данной матричной игре;
4) найти оптимальное решение прямой задачи (для отрасли В) симплекс-методом;
5) используя соответствие переменных, выписать оптимальное решение двойственной задачи (для отрасли А);
6) дать геометрическую интерпретацию этого решения (для отрасли А);
7) используя соотношение между оптимальными решениями пары двойственных задач, оптимальными стратегиями и ценой игры, найти решение игры в смешанных стратегиях;
8) дать рекомендации по каждой отрасли.
-1 1 4 2
-1 1 5 3
1 0 3 -1
0 -2 2 -2
Задание 3
Сетевое планирование.
Информация о строительстве комплекса задана нумерацией работ, их продолжительностью (в ед. времени), последовательностью выполнения и оформлена в виде таблицы. За какое минимальное время может быть завершен весь комплекс работ?
Требуется:
1) по данным таблицы построить сетевой график комплекса работ и найти правильную нумерацию его вершин;
2) рассчитать на сетевом графике ранние и поздние сроки наступления событий, а также резервы времени событий;
3) выделить на сетевом графике критические пути;
4) для некритических работ найдем полные и свободные резервы времени;
5) выполнить анализ сетевого графика.
№ работы 1 2 3 4 5 6 7 8
Последующие работы 6 4, 6 5, 7 5, 7 8 8 6 -
Продолжительность работы 20 12 8 4 14 7 7 10
Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы № 3 на 8 месяцев, работы № 7 на 2 месяца? На какое время можно увеличить продолжительность работ № 1 и № 3, не изменяя ранние сроки выполнения последующих работ?
Задание 1………… 3
Задание 2………… 12
Задание 3………… 23
Список использованной литературы………. 31
1. Александрова И.А., Гончаренко В.М. Методы оптимальных решений. Руководство к решению задач. М.: Финуниверситет, 2012. - 114 с.
2. Казанская О.В., Юн С.Г., Альсова О.К. Модели и методы оптимизации. Практикум: уч. пособие - Новосибирск: Изд-во НГТУ, 2012.-204 с.
....................
....................