Дисциплина: Методика обучения информатики
Дата изготовления: февраль 2020 года.
Свои готовые работы, я могу оперативно проверить на оригинальность по Antiplagiat .ru и сообщить Вам результат.
Введение 3
1. Средства языка Python для численных методов 5
1.1. Понятие о численном методе решения задачи 5
1.2. Язык Python 7
1.2. Библиотеки Python для численных методов 11
2. Поиск безусловного экстремума функции 18
2.1 Метод сканирования 18
2.2 Метод общего поиска 19
2.3 Поиск безусловного экстремума функции на языке Python 22
3. Метод Ньютона многомерной оптимизации 29
3.1. Постановка задачи многомерной оптимизации 29
3.2. Метод Ньютона 34
3.3. Реализация метода Ньютона на языке Python 37
Заключение 42
Список литературы 43
1. Excel для экономистов и менеджеров / А.Г. Дубина и др. – СПб.: Питер, 2014. – 312 с.
2. Агальцов В.П. Математические методы в программировании. Учебник – 2 изд. М.: Издательство: Форум, 2010. – 256 с.
3. Алибеков, И.Ю. Численные методы / И.Ю. Алибеков. – М.: МГИУ, 2008. – 220 c.
4. Амосов А.А. , Дубинский Ю. А., Копченова Н. В. Вычислительные методы для инженеров: Учеб. пособие. – М.: Высш. шк., 2014. – 547 с.
5. Бабкин, А.В. Численные методы в задачах физ. быстропротек. процессов. Прикл. механика сплош.сред в 3 т.Т.3. 2 изд / А.В. Бабкин. – М.: МГТУ, 2006. – 520 c.
6. Бахвалов, Н.С. Численные методы в задачах и упражнениях: Учебное пособие / Н.С. Бахвалов, А.В. Лапин, Е.В. Чижонков. – М.: Бином, 2015. – 240 c.
7. Бахвалов, Н.С. Численные методы в задачах и упражнениях: Учебное пособие / Н.С. Бахвалов, А.В. Лапин, Е.В. Чижонков. – М.: БИНОМ. Лаборатория знаний, 2010. – 240 c.
8. Вабищевич, П.Н. Численные методы: Вычислительный практикум / П.Н. Вабищевич. – М.: Ленанд, 2016. – 320 c.
9. Вайникко, Г.М. Численные методы в гиперсингулярных интегральных уравнениях и их приложения / Г.М. Вайникко, И.К. Лифанов, Л.Н. Полтавский. – М.: Янус-К, 2001. – 508 c.
10. Волков, Е.А. Численные методы / Е.А. Волков. –СПб.: Лань, 2008. – 256 c.
11. Демидович, Б.П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения / Б.П. Демидович, И.А. Марон, Э.З. Шувалова. –СПб.: Лань, 2010. – 400 c.
12. Колдаев, В.Д. Численные методы и программирование: Учебное пособие / В.Д. Колдаев; Под ред. Л.Г. Гагарина. – М.: ИД ФОРУМ, НИЦ ИНФРА-М, 2013. – 336 c.
13. Косарев, В.П. Численные методы линейной алгебры: Учебное пособие / В.П. Косарев, Т.Т. Андрющенко. –СПб.: Лань П, 2016. – 496 c.
14. Левин, В.А. Нелинейная вычислительная механика прочности. Т.2 Численные методы / В.А. Левин. - М.: Физматлит, 2015. - 544 c.
15. Левин, В.А. Т.2. Численные методы. .Параллельные вычисления на ЭВМ / В.А. Левин. - М.: Физматлит, 2015. - 544 c.
16. Лесин В. В., Лисовец Ю. П. Основы методов оптимизации. – М.: Изд-во МАИ, 2011.
17. Марон, И.А. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения: Учебное пособие / Б.П. Демидович, И.А. Марон, Э.З. Шувалова; Под ред. Б.П. Демидович. –СПб.: Лань, 2010. – 400 c.
18. Математическое программирование. Учебник (издание 2-е). Балдин К.В., Брызгалов Н.А., Рукосуев А., Издательство: Дашков и К, 2012. – 249 с.
19. Пантелеев А. В., Летова Т. А. Методы оптимизации в примерах и задачах. – М.: Высш. шк., 2012. – 330 с.
20. Панюкова, Т.А. Численные методы / Т.А. Панюкова. – М.: КД Либроком, 2010. – 24 c.
21. Стариков А.В. Экономико-математическое и компьютерное моделирование: учеб. пособие / А.В. Стариков, И.С. Кущева; Фед. агентство по образованию, ГОУ ВПО «ВГЛТА». – Воронеж, 2008. – 125 с.