НГУЭУ. Методы оптимальных решений. Контрольная работа. Вариант 4.
Ситуационная (практическая) задача № 1
Для изготовления продукции двух видов А и В фирма расходует ресурсы, а от реализации этой продукции получает доход. Информация о нормах затрат ресурсов на единицу выпускаемой продукции, запасах расходуемых ресурсов, имеющихся в распоряжении фирмы, и выручки от реализации продукции приведены в таблице:
Наименование ресурсов Нормы затрат ресурсов Обьем ресурсов
А В
Сырье(кг) 2 1 159
Оборудование(ст.час) 1 2 156
Трудовые ресурсы(чел.час) 6 1 625
Цена изделия(руб) 118 143
Задача фирмы заключается в том, чтобы найти план выпуска, обеспечивающий получение максимальной выручки от реализации готовой продукции.
Требуется:
1. Построить математическую модель оптимизации выпуска продукции и записать ее в форме задачи линейного программирования.
2. Используя графический метод решения, найти оптимальный план выпуска продукции.
3. Составив двойственную задачу, к задаче оптимизации выпуска продукции, найти ее оптимальное решение, используя условия «дополняющей нежесткости». Дать экономическую интерпретацию этого решения.
Ситуационная (практическая) задача № 2
Фирма может влиять дополнительным финансированием на скорость строительства своего торгового павильона. Очередность выполнения работ, их нормальная и ускоренная продолжительность выполнения, а также стоимость строительно-монтажных работ при нормальном и ускоренном режиме их выполнения приведены в таблицах:
Имя работы Опирается на работу Нормальный срок(дни) Ускоренный срок(дни) Нормальная стоимость (млн.р) Срочная стоимость(млн.р.)
А E,H,B 6 4 29,2 43,8
В G 3 2 1,2 1,8
С 12 8 7,2 10,8
D C,F,Q 3 2 16,4 24,6
E 12 6 51 102
F E,H,B 3 2 1,6 2,4
G V 3 2 0,2 0,3
H G 3 2 0,8 1,2
Q V 14 6 58,2 135,8
V 3 2 20 30
Требуется:
1. С учетом технологической последовательности работ построить сетевой график выполнения этих работ.
2. Рассчитать временные характеристики сетевого графика при нормальном режиме выполнения работ. Найти критический путь и его продолжительность, указать все возможные критические пути, определить стоимость всего комплекса работ.
3. Указать стратегию минимального удорожания комплекса работ при сокращении сроков строительства на 2 дня. В какую итоговую сумму обойдется фирме ускоренная стройка павильона?
Тестовые задания
1. Дана задача линейного программирования:
Z = 5x1 + 3x2 →max
2x1 + 3x2 ≤ 15
6x1 + 2x2 ≤ 10
x1 ≥ 0, x2 ≥ 0
Представленная задача записана…
а) в канонической форме;
b) в стандартной форме;
c) ни в одной из этих форм.
2. В каком случае предприятию выгодно приобрести некоторое дополнительное количество используемого ресурса?
a) если оптимальная двойственная оценка этого ресурса положительна;
b) если оптимальная двойственная оценка этого ресурса выше его рыночной цены;
c) если оптимальная двойственная оценка этого ресурса ниже его рыночной цены.
3. Стоимость выполнения фиктивной работы:
а) всегда равна нулю;
b) зависит от вида фиктивной работы;
c) всегда больше нуля.
4. Максимальное значение некоторой линейной функции Z(x), то есть max Z(x), равно…
a) минимальному значению функции –Z(x), то есть
max Z(x) = min(–Z(x))
b) минимальному значению функции –Z(x), взятому с противоположным знаком, то есть
max Z(x) = –min(–Z(x))
c) максимальному значению функции -Z(x), взятому с противоположным знаком, то есть
max Z(x) = –max(–Z(x))
5. Какое из следующих утверждений верно?
a) направление градиента является направлением наискорейшего возрастания функции;
b) направление градиента является направлением наискорейшего возрастания целевой функции, если необходимо определить ее максимальное значение;
c) направление градиента является направлением наискорейшего убывания функции, если необходимо определить ее минимальное значение.
6. Транспортная задача
50 50+b 100
100+a 2 3 6
110 4 6 3
будет закрытой, если
a) а = 30, b = 30
b) а = 20, b = 10
c) а = 10, b = 20
7. Критическое время в сетевом графике проекта отображает…
a) максимальное время, требуемое для осуществления проекта;
b) минимальное время, требуемое для осуществления проекта;
c) среднее время, требуемое для осуществления проекта.
8. Полученное решение транспортной задачи является вырожденным, если при m поставщиках, n потребителях и r занятых поставками клеток таблицы планирования транспортировок ресурса величина d = m + n – 1 – r:
a) больше нуля;
b) равна нулю;
c) меньше нуля.
9. Если некоторое изделие выпускается по оптимальному плану в ненулевом объеме, то…
a) доход от реализации единицы этого изделия меньше суммарной оценки всех ресурсов, используемых при его производстве;
b) доход от реализации единицы этого изделия больше суммарной оценки всех ресурсов, используемых при его производстве;
c) доход от реализации единицы этого изделия равен суммарной оценке всех ресурсов, используемых при его производстве.
10. Число ограничений в прямой задаче линейного программирования равно…
a) числу переменных в прямой задаче;
b) числу ограничений в двойственной задаче;
c) числу переменных в двойственной задаче.