Теория вероятностей СПбГТУ Вариант 12 (9 заданий)

Раздел
Математические дисциплины
Просмотров
482
Покупок
2
Антиплагиат
Не указан
Размещена
22 Дек 2019 в 15:37
ВУЗ
Санкт-Петербургский Государственный Технический Университет
Курс
Не указан
Стоимость
500 ₽
Демо-файлы   
1
png
Задание В12 Задание В12
407.1 Кбайт 407.1 Кбайт
Файлы работы   
1
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
doc
Готовое В12
351 Кбайт 500 ₽
Описание

Теория вероятностей СПбГТУ Вариант 12 (9 заданий)


Санкт-Петербургский Государственный Технический Университет


Ю.Д. Максимов, Б.А. Куклин, Ю.А. Хватов


МАТЕМАТИКА

Выпуск 6

Теория вероятностей

Контрольные задания с образцами решений

Тест

Конспект-справочник


Санкт-Петербург

Издательство СПбГТУ

2002


Теория вероятностей

Вариант 12 (9 заданий)


   1. В семиэтажном доме лифт может останавливаться на шести этажах, начиная со второго. В лифт вошли 4 пассажира, каждый из которых с одинаковой вероятностью может выйти на любом этаже. Какова вероятность того, что пассажиры выйдут парами на разных этажах?


   2. Дана схема включения элементов.

   Вероятность отказа каждого элемента в течение времени T равна p. Элементы работают независимо и включены в цепь по приведённой схеме. Пусть событие Ai означает отказ элемента с номером i (i = 1, 2, 3 …), а событие B – отказ цепи за время T (прекращение тока в цепи). Требуется:

   2.1. Написать формулу, выражающую событие B через все события Ai.

   2.2. Найти вероятность события B.

   2.3. Вычислить P(B) при p = 1/2.


   3. В водоёме обитают три вида хищных рыб: судаки, щуки и окуни в соотношении 1 : 2 : 4. Для поимки хищной рыбы на некоторое время выставляется живцовая снасть. Оказавшийся в поле зрения хищника живец бывает им схвачен с вероятностью 0,4 – для судака, 0,3 – для щуки, 0,2 – для окуня.

   3.1. Какова вероятность захвата живца хищником за время ловли (событие A), если вероятность обнаружения живца судаком, щукой или окунем пропорциональна их численности?

   3.2. К какому виду вероятнее всего принадлежит рыба, схватившая живца?


   4. Вероятность брака изделия равна 0,02. Контролёр-автомат обнаруживает брак с вероятностью 0,95. Найти вероятность того, что из n изделий, признанных контролёром-автоматом годными, бракованных не более одного.

   4.1. Вычислить эту вероятность при n = 500.

   4.2. Вычислить ту же вероятность с помощью приближённой формулы Пуассона.

   4.3. Вычислить абсолютную D и относительную d погрешности приближённого вычисления.


   5. Каждая из 100 деталей подвергается двум испытаниям. Вероятность выхода из строя каждой детали при первом испытании равна 0,1, при втором – 0,2. Найти закон распределения и математическое ожидание числа X вышедших из строя деталей.


   6. Плотность вероятности случайной величины X задана формулой:


   Найти:

6.1. C;

6.2. F(x);

6.3. mX;

6.4. DX;

6.5. sX;

6.6. P(|X – mX| < sX);

6.7. x1/4 – нижнюю квартиль.

6.8. Построить графики f(x) и F(x).


   7. Ошибка X измерительного прибора распределена нормально. Систематическая ошибка прибора отсутствует (mX = 0). Средняя квадратическая ошибка sX = 8 мкм (микрометров). Найти вероятность того, что при очередном измерении ошибка превысит по модулю 8 мкм.


   8. Детали на производстве сортируются на 4 группы по величине отклонений от номиналов двух существенных параметров. Отклонения ранжируются. Ранги X, Y отклонений могут принимать лишь значения 0 и 1. Распределение двумерной случайной величины (X, Y) задано таблицей.


Y

X   0   1

0   p11   p12

1   p21   p22


   Здесь:

p11 = 0,4, p12 = 0,2, p21 = 0,1, p22 = 0,3.

   Найти коэффициент корреляции rXY, называемый ранговым.


   9. Плотность вероятности двумерной случайной величины (X, Y) задана формулой:


   Найти:

9.1. C;

9.2. fX(x), fY(y);

9.3. mX, mY.

9.4. sX, sY;

9.5. rXY.

9.6. Выяснить, зависимы или нет X, Y.

Вам подходит эта работа?
Похожие работы
ТВиМС - Теория вероятностей и математическая статистика
Задача Задача
13 Ноя в 21:12
9
0 покупок
ТВиМС - Теория вероятностей и математическая статистика
Задача Задача
13 Ноя в 21:09
8
0 покупок
ТВиМС - Теория вероятностей и математическая статистика
Задача Задача
13 Ноя в 20:54
9
0 покупок
ТВиМС - Теория вероятностей и математическая статистика
Задача Задача
13 Ноя в 12:56
7
0 покупок
Другие работы автора
История
Тест Тест
14 Ноя в 14:29
20 +4
0 покупок
Информатика
Тест Тест
14 Ноя в 14:22
16 +2
0 покупок
Высшая математика
Тест Тест
6 Ноя в 12:45
66 +1
0 покупок
Высшая математика
Тест Тест
6 Ноя в 12:42
113 +2
0 покупок
Системы автоматизированного проектирования
Тест Тест
6 Ноя в 02:24
43 +1
0 покупок
Системы автоматизированного проектирования
Тест Тест
6 Ноя в 02:23
56
0 покупок
Системы автоматизированного проектирования
Тест Тест
6 Ноя в 02:22
97 +1
0 покупок
Системы автоматизированного проектирования
Тест Тест
6 Ноя в 02:21
35 +1
0 покупок
Системы автоматизированного проектирования
Тест Тест
5 Ноя в 23:08
51
0 покупок
Системы автоматизированного проектирования
Тест Тест
5 Ноя в 23:06
32
0 покупок
Темы журнала
Показать ещё
Прямой эфир