6.11. Некоторый излучатель формирует плоскую электромагнитную волну в вакууме Е(t,x), уравнение которой при x = 0 можно представить в виде суперпозиции двух гармонических функций, приведенных в таблице вариантов 4. Методом графического сложения определить форму результирующего сигнала Е(t,0) и пространственную форму волны Е(0,x) на отрезке от x1 = 0 до x2 = 2l1 в начальный момент времени. Здесь l1 — длина волны гармонической компоненты с частотой w1, значение константы E0 считать известным. Допускается выполнение этой и следующей задачи на компьютере с использованием математических программных систем, таких как Mathcad.
6.11. Некоторый излучатель формирует плоскую электромагнитную волну в вакууме Е(t,x), уравнение которой при x = 0 можно представить в виде суперпозиции двух гармонических функций, приведенных в таблице вариантов 4. Методом графического сложения определить форму результирующего сигнала Е(t,0) и пространственную форму волны Е(0,x) на отрезке от x1 = 0 до x2 = 2l1 в начальный момент времени. Здесь l1 — длина волны гармонической компоненты с частотой w1, значение константы E0 считать известным. Допускается выполнение этой и следующей задачи на компьютере с использованием математических программных систем, таких как Mathcad.
6.11. Некоторый излучатель формирует плоскую электромагнитную волну в вакууме Е(t,x), уравнение которой при x = 0 можно представить в виде суперпозиции двух гармонических функций, приведенных в таблице вариантов 4. Методом графического сложения определить форму результирующего сигнала Е(t,0) и пространственную форму волны Е(0,x) на отрезке от x1 = 0 до x2 = 2l1 в начальный момент времени. Здесь l1 — длина волны гармонической компоненты с частотой w1, значение константы E0 считать известным. Допускается выполнение этой и следующей задачи на компьютере с использованием математических программных систем, таких как Mathcad.