Задача 3.3. Вариант 19
Для данной колебательной системы (КС), представленной на соответствующем рисунке, необходимо:
1. Вывести дифференциальное уравнение свободных затухающих колебаний, если сила сопротивления движению КС пропорциональна скорости, т.е. , где r - коэффициент сопротивления.
2. Определить круговую частоту w0 и период T0 свободных незатухающих колебаний.
3. Найти круговую частоту w и период T свободных затухающих колебаний.
4. Вычислить логарифмический декремент затухания.
5. Определить, используя начальные условия задачи и исходные данные, начальные амплитуду A0 и фазу j0 колебаний.
6. Написать с учетом найденных значений уравнение колебаний.
Общие исходные данные: m* = 0,1 кг; k* = 10 Н/м; l* = 0,1 м; r* = 0,1 кг/с; v* = 0,1 м/с; r* = 103 кг/м3; S* = 10-3 м2; j* = p/3.
Каждая колебательная система (КС), представленная на рис. 28, 29, 30, 31, состоит из шайбы массой m и двух упругих пружин, имеющих жесткости k1 и k2 . Движение КС происходит в окружающей среде с малыми вязкими свойствами. На рис. 28, 30 шайба колеблется под действием пружин, соединенных параллельно, а на рис. 29, 31 колебания происходят под действием пружин, соединенных последовательно. Массой пружин можно пренебречь. На рис. 28, 29 КС имеет горизонтальное расположение, а на рис. 30, 31 вертикальное расположение в поле силы тяжести. l10 и l20 – длины 1-ой и 2-ой пружин в недеформированных состояниях; L (на рис. 28, 30)—длина каждой пружины в деформированном состоянии; L (на рис.29, 31) — общая длина двух пружин в деформированном состоянии; – возможные векторы начальной скорости шайбы. Шайбу, находящуюся в положении равновесия, смещают до расстояния L, а затем импульсом придают ей в начальный момент времени t = 0, в соответствии с заданием, скорость (см. таблицы № 10 - 13). В результате КС приходит в колебательное движение.
№ вар. r k1 k 2 m l10 l20 L V1 V2
19 3r* 1,2 k* k * 0,4m* 2l* 2l* 4,8l* 0,8U* 0