вариант 9
Задание №1.
Решите задачу графически, используя теоремы двойственности:
min
при условии, выполнения ограничений:
Задание №2
Для производства двух видов изделий используется три вида сырья. Запасы сырья ограничены, предприятие обеспечено сырьем первого вида в количестве 7710 кг, сырьем второго вида в количестве 8910 кг, сырьем третьего вида в количестве 7800 кг.
На производство одного изделия первого вида необходимо затратить сырья первого вида -5 кг, сырья второго вида - 9 кг, сырья третьего вида - 3 кг. На производство одного изделия второго вида необходимо затратить сырья первого вида - 9 кг, сырья второго вида - 7 кг, сырья третьего вида – 10 кг. Прибыль от реализации одного изделий первого и второго видов составляет 10руб., 22 руб. соответственно. Составить план производства изделий так, чтобы предприятие получило наибольшую прибыль от их реализации. Задачу решить симплексным методом.
Задание №3.
На трех базах Б1, Б2, Б3 находится однородный груз. Этот груз необходимо перевезти на пять предприятий П1, П2, П3, П4, П5. Запасы груза на базах, потребности предприятий в этом грузе указаны в распределительной таблице. Стоимость перевозки одной тонны груза с базы Бi на предприятие Пj составляет сij рублей. Эти стоимости также указаны в распределительной таблице. Необходимо спланировать перевозки так, чтобы их общая стоимость была наименьшей.
Предприятия Запасы на
Базы П1 П2 П3 П4 П5 базах
Б1 6 6 5 4 7 1050
Б2 5 7 8 7 5 840
Б3 5 6 5 3 4 960
Потребности предпр. 690 490 435 560 675
Задание №4
Игра задана платежной матрицей . Определить нижнюю и верхнюю цены игры. Найти решение игры, предварительно упростив платежную матрицу.
Задание №5
Игра задана платежной матрицей . Свести матричную игру к задаче ЛП. Найти решение игры, используя Excel («Поиск решений»).
Задание №6
На предприятии необходимо запустить в эксплуатацию два комплекса взаимосвязанного оборудования. Запуск первого комплекса состоит из 6-ти промежуточных этапов, запуск 2-го комплекса состоит из 4-х промежуточных этапов. Так как комплексы взаимосвязаны, то затраты по запуску очередного этапа одного комплекса зависит от того, на каком этапе находится запуск другого комплекса. Работы на двух комплексах одновременно не ведутся. Необходимо найти управление последовательностью этапов запуска комплексов, при котором общие расходы были бы наименьшими. На ребрах графа отмечены затраты по запуску каждого из этапов.
Задание №7
Система дорог между населенными пунктами представлена в виде графа.
Задано расстояние между населенными пунктами в километрах: Требуется найти кратчайший путь от пункта А ко всем остальным населенным пунктам.
Задание №8.
Найти оптимальный план замены оборудования на период продолжительностью 6 лет, если годовая прибыль и остаточная стоимость в зависимости от возраста задаются таблицей. Стоимость нового оборудования равна 9 д.е., а возраст к началу эксплуатационного периода 1 год.
Время , в течение которого используется оборудование
10 9 9 8 8 7 6
9 8 8 7 6 6 4
Задание №9.
Распределить 80 усл. ед. средств между тремя предприятиями , и с целью получения максимальной суммарной прибыли. Для упрощения вычислений выделяемые суммы кратны 20 усл. ед. Прибыль, которая может быть получена предприятиями, занесена в таблицу.
Размер вложенных средств (усл. ед.) Прибыль предприятий (усл. ед.)
0 0 0 0
20 2,5 4,0 1,5
40 6,0 4,2 5,7
60 7,2 4,6 5,7
80 8,3 5,5 6,4