1. Абовский Н.П. О применении метода конечных элементов совместно с другими методами. Пространственные конструкции в Краснодарском крае, 1975, в.8, с.215–219.
2. Абовский Н.П., Енджиевский Л.В., Савченков В.И. и др. Избранные задачи по строительной механике и теории упругости. М.: Стройиздат, 1978. 189 с.
3. Абрамов Г.Д. Исследование устойчивости и сложного изгиба пластин, стержневых наборов и оболочек разностными методами. Л.: Судпромгиз, 1951. 52 с.
4. Александров А.В. Численное решение линейных дифференциальных уравнений при помощи матрицы дифференцирования // Тр. МИИТ.– М., 1961.– вып. 131. с.253–266.
5. Александров А.В., Потапов В.Д. Основы теории упругости и пластичности: учеб. Для строит. спец . ВУЗов. М: «Высшая школа», 1990
6. Александров А.В., Шапошников Н.Н. Об использовании дискретной модели при расчёте пластинок с применением цифровых автоматических машин // Сб. трудов МИИТ. М.: Трансжелдориздат, 1966. С. 50–67.
7. Бате К., Вилсон Е., Численные методы анализа и метод конечных элементов. Пер. с. Англ. – М., Стройиздат, 1982. –447с.
8. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987. 600 с.
9. Бовин В.А. Дискретный вариант плоской теории упругости // Исследования по теории сооружений. М.: Стройиздат, 1980. В. 24. С. 121– 128.
10. Боголюбов H.H., Прикарпатский А.К. Полная интегрируемость нелинейной системы //Теоретическая и математическая физика. 1986. – 67, № 3. – С. 84 – 86
11. Бузун И.М. Метод конечных разностей и метод конечных элементов. Сравнение решений для пластин. – Тюменский индустриальный институт, 1974, в.40, с.79–87.
12. Вазов В., Форсайт Д. Разностные методы решения дифференциальных уравнений в частных производных. Пер. с англ. М., ИЛ, 1963.
13. Вайнберг Д.В. Численные методы в теории оболочек и пластин. – Труды VI всесоюзной конференции по теории оболочек и пластин. М., наука, 1966, с.890–895.
14. Вайнберг Д.В. и др. Метод конечного элемента в механике деформируемых тел // Прикладная механика. 1972. Т. 8. №8. С. 3–28.
15. Вайнберг M. M. Вариационные методы исследования нелинейных операторов. М.: Гостехиздат, 1956. – 344 с.
16. Ван Цзиде. Прикладная теория упругости. М.: Физматгиз, 1959. 400 с.
17. Варвак П.М. Развитие и приложение метода сеток к расчету пластинок. Киев , 1949.–ч.I.–1952.–ч.2.–116с.
18. Варвак П.М. Расчет толстой квадратной плиты, защемленной по боковым граням // Расчет пространственных конструкций. М., 1959. вып.5. С.245–249.
19. Варвак П.М., Варвак А.П. Метод сеток в задачах расчета строительных конструкций. М.: Стройиздат, 1977.– 160с.
20. Вахитов М.Б. Интегрирующие матрицы – аппарат численного решения дифференциальных уравнений строительной механики // Известия вузов. Авиационная техника. 1966. №3. С. 50–61.
21. Власов Б.Ф. Об уравнениях теории изгиба пластин // Изв. АН СССР, ОТН. М.,1957. №12. с.57–60.
22. Влияние двухпараметрического упругого основания на собственные колебания пластин средней