Теория игр и исследование операций Вариант 5 (6 заданий)

Раздел
Математические дисциплины
Предмет
Просмотров
291
Покупок
0
Антиплагиат
Не указан
Размещена
17 Фев 2020 в 12:14
ВУЗ
Не указан
Курс
Не указан
Стоимость
550 ₽
Файлы работы   
1
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
doc
ТИ и ИО Вариант 5 (6 заданий)
308.5 Кбайт 550 ₽
Описание

Задание 1

Составить матрицу А для матричной игры «захват города»: первый игрок пытается захватить город, у него 3 дивизии, у защитников – 4 дивизии. Город считается захваченным, если хотя бы на одной из двух застав у нападающих имеется численное преимущество. При захвате города выигрывает 1 балл первый игрок, иначе – второй игрок. Определить существует ли решение этой игры в чистых стратегиях.

Задание 2

Проверить, существует ли решение матричной игры в чистых стратегиях. Если да, то найти оптимальные стратегии и цену игры, иначе найти нижнюю и верхнюю цену игры, а также стратегии, реализующие осторожное поведение игроков.

А1 = -5 3 1 9

5 5 4 6

-4 -2 0 -5

7 -2 3 4

А2 = -1 3 -3

2 0 3

2 1 1


Задание 3

Определить выигрыш 1 и 2 игрока в матричной игре А при использовании смешанных стратегий Х = (1/2; 1/2; 0) и Y (0; 1/3; 2/3). Проверить, являются ли эти стратегии оптимальными стратегиями?

3 4 2

1 6 0

2 3 4


Задание 4

Составить задачи линейного программирования, соответствующие игре с матрицей А. Пусть известно решение этих задач: х1 = 1/6, х2 = 1/3, х3 = 0 и у1 = 1/10, у2 = 3/10, у3 = 1/10.

Найти оптимальные стратегии игроков и цену матричной игры.


Задание 5

Задание 5.1.

Найти оптимальные стратегии для 1 и 2 игроков, определить цену игры с матрицей аналитическим способом

1 4 6

6 7 10

8 2 3


Задание 5.2

Найти оптимальные стратегии для 1 и 2 игроков, определить цену игры с матрицей графическим способом

1 2 4 1

5 -1 1 3


Задание 6

Для биматричной игры с матрицами А и В:

(4,1) (2,2)

(6,3) (5,-1)

(1,3) (4,5)

А) определить существует ли ситуация равновесия в чистых стратеги-ях;

Б) определить, какие ситуации биматричной игры являются оптимальными по Парето;

В) найти выигрыш 1-го и 2-го игроков при использования смешанных стратегий Х = (1/2; ½; 0) и Y = (1/3; 2/3).

Оглавление

Содержание

Задание 1 3

Задание 2 6

Задание 2.1 6

Задание 2.2 7

Задание 3 8

Задание 4 10

Задание 5 13

Задание 5.1. 13

Задание 5.2 16

Задание 6 18

Список использованных источников 21

Список литературы

Не подошли данные? Другой вариант? Не проблема! Напишите мне, оформите заказ и в течение 1-5 дней (в зависимости от загруженности) я выполню вашу работу.

Работа была выполнена в 2020 году, принята преподавателем без замечаний.

Пример оформления задач для общего представления о качестве приобретаемой работы можно посмотреть в моем профиле (образцы выполнения).

Расчеты выполнены достаточно подробно. Все расчеты сопровождены формулами, пояснениями и выводами. Объем работы 21 стр. TNR 14, интервал 1,5.

Вам подходит эта работа?
Похожие работы
Теория игр
Тест Тест
1 Дек в 14:36
49
0 покупок
Теория игр
Задача Задача
29 Сен в 17:31
56
0 покупок
Теория игр
Тест Тест
19 Сен в 14:43
125
3 покупки
Теория игр
Задача Задача
8 Сен в 14:05
91
0 покупок
Другие работы автора
ТВиМС - Теория вероятностей и математическая статистика
Контрольная работа Контрольная
30 Июн в 11:02
231
0 покупок
Темы журнала
Показать ещё
Прямой эфир