Теория нейронных сетей

Раздел
Программирование
Просмотров
145
Покупок
0
Антиплагиат
80% Антиплагиат.РУ (модуль - Интернет Free)
Размещена
29 Авг 2024 в 17:29
ВУЗ
Не указан
Курс
Не указан
Стоимость
300 ₽
Файлы работы   
1
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
docx
Нейросеть 2.0.
42.9 Кбайт 300 ₽
Описание

Реферат по теме "Теория нейронных сетей" на 26 страниц.

Нейронные сети – это математические модели, которые имитируют работу нервной системы человека. Они состоят из множества взаимосвязанных нейронов, которые обрабатывают информацию и передают ее по сети.

Нейроны являются основными строительными блоками нейронных сетей. Они имитируют работу нейронов в мозге и выполняют функцию обработки и передачи информации. Каждый нейрон принимает входные сигналы, обрабатывает их и генерирует выходной сигнал.

Актуальность данной работы: Построение нейронных сетей на основе базисных функций является важным направлением исследований в области искусственного интеллекта и глубокого обучения. Это связано с тем, что базисные функции являются универсальными математическими объектами, которые могут быть использованы для описания широкого спектра данных и задач.

Одной из основных причин актуальности построения нейронных сетей на основе базисных функций является их способность эффективно моделировать сложные зависимости между данными. Базисные функции, такие как сигмоида, гиперболический тангенс и ReLU, обладают уникальными свойствами, которые позволяют им выделять важные признаки и обрабатывать нелинейные зависимости в данных. Это позволяет нейронным сетям, основанным на этих функциях, эффективно обучаться и решать широкий спектр задач, включая классификацию, регрессию, кластеризацию и другие.

Еще одним преимуществом построения нейронных сетей на основе базисных функций является их способность к адаптации к различным типам данных. Базисные функции обладают различными параметрами, которые могут быть настроены для оптимальной работы с разными типами данных. Например, сигмоида хорошо работает с бинарными классификациями, гиперболический тангенс — с многоклассовой классификацией, а ReLU — с обработкой нелинейных зависимостей. Это позволяет нейронным сетям, основанным на базисных функциях, эффективно работать с различными типами данных и достигать высокой точности предсказаний.

Кроме того, построение нейронных сетей на основе базисных функций позволяет упростить процесс обучения и ускорить сходимость алгоритмов. Базисные функции обладают определенными математическими свойствами, которые позволяют эффективно оптимизировать веса нейронной сети. Это позволяет достичь быстрого обучения и улучшить производительность нейронных сетей.

В целом, актуальность построения нейронных сетей на основе базисных функций заключается в их способности эффективно моделировать сложные зависимости, адаптироваться к различным типам данных и упрощать процесс обучения. Эти факторы делают нейронные сети на основе базисных функций мощным инструментом для решения различных задач в области искусственного интеллекта и глубокого обучения.

Цель данной работы: изучить построение нейронных сетей на основе базисных функций

Задачи данной работы:

- изучить понятие нейросетей

- исследовать преимущества нейросети на основе базисных функций

- рассмотреть ограничения нейросетей на основе базисных функций

- сделать выводы и указать их в заключении

Оглавление
Список литературы

1.    Игнатенков A.B., Ольшанский A.M. Применение искус - Современные информационные технологии и ИТ-образование, Т. 14 № 2 (2018) ISSN 2411-1473 sitito.cs.msu.ru

2.    Рыжков А.П., Катков О.Н., Морозов С.В. Нейросетевые технологии при решении задач разграничения доступа // Вопросы кибербезопасности. 2019. № 3(16). C. 69-76.

3.    Басалин П.Д. ИТ-образование с применением интеллектуальной обучающей среды / П.Д. Басалин, Е.А. Кумаги-на, Е.А. Неймарк, А.Е. Тимофеев, И.А. Фомина, Н.Н. Чер-нышова // Современные информационные технологии и ИТ-образование. 2019. Том 13, № 4. С. 105-111.

4.    Михаилов А.С., Староверов Б.А. Визуализация процесса формирования обучающей выборки для искусственной нейронной сети // Научная визуализация. 2020. Том 8, № 2. С. 85-97. URL: https://elibrary.ru/item.asp?id=26460835 (дата обращения: 03.12.2023).

5.    Горшенин А.К. Анализ вероятностно-статистических характеристик осадков на основе паттернов // Информатика и ее применение. 2017. № 4. С. 38-46.

6.    Сеть радиальных базисных функций [Электронный ресурс] // «MachineLearning.ru» - информационный ресурс. URL: http://www.machinelearning.ru/wiki/index. php?title=RBF (дата обращения: 03.12.2023).

7.    Любивая Т.Г. Табличная имитация алгоритмов искусственного интеллекта в MS Excel // NovaInfo.Ru. 2019. Том 4, № 56. С. 251-256.

Вам подходит эта работа?
Похожие работы
Основы программирования
Тест Тест
21 Янв в 18:48
14 +14
0 покупок
Основы программирования
Тест Тест
20 Янв в 08:52
28 +7
0 покупок
Основы программирования
Контрольная работа Контрольная
16 Янв в 19:35
21 +1
0 покупок
Другие работы автора
Анатомия
Реферат Реферат
20 Дек 2024 в 23:00
64 +1
0 покупок
Семейное право
Эссе Эссе
20 Дек 2024 в 22:50
40 +1
0 покупок
Логика
Реферат Реферат
20 Дек 2024 в 22:45
59 +1
0 покупок
Менеджмент
Эссе Эссе
20 Дек 2024 в 22:37
60 +1
1 покупка
История государства и права
Эссе Эссе
20 Дек 2024 в 22:33
61 +1
0 покупок
Теория государства и права
Эссе Эссе
20 Дек 2024 в 22:30
46 +1
0 покупок
Безопасность жизнедеятельности
Реферат Реферат
20 Дек 2024 в 22:29
56 +2
0 покупок
История рекламы
Эссе Эссе
20 Дек 2024 в 22:23
49 +2
0 покупок
История государства и права
Эссе Эссе
20 Дек 2024 в 22:18
113 +1
0 покупок
Философия
Эссе Эссе
20 Дек 2024 в 22:13
65 +1
0 покупок
История России
Эссе Эссе
20 Дек 2024 в 22:06
54 +1
0 покупок
История России
Эссе Эссе
20 Дек 2024 в 22:03
65 +1
0 покупок
Музыка
Реферат Реферат
20 Дек 2024 в 22:00
55 +1
0 покупок
Государственное управление
Эссе Эссе
20 Дек 2024 в 21:22
133 +2
1 покупка
Основы российской государственности
Реферат Реферат
20 Дек 2024 в 21:13
158 +2
3 покупки
Темы журнала
Показать ещё
Прямой эфир