РОСДИСТАНТ ТГУ Физика 2 (ответы на промежуточные тесты)

Раздел
Естественные дисциплины
Предмет
Тип
Просмотров
445
Покупок
19
Антиплагиат
Не указан
Размещена
9 Ноя 2023 в 14:42
ВУЗ
РОСДИСТАНТ ТГУ
Курс
Не указан
Стоимость
840 ₽
Файлы работы   
12
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
pdf
Промежуточный тест 12
150.1 Кбайт 70 ₽
pdf
Промежуточный тест 7
167.4 Кбайт 70 ₽
pdf
Промежуточный тест 10
137 Кбайт 70 ₽
pdf
Промежуточный тест 8
163.9 Кбайт 70 ₽
pdf
Промежуточный тест 5
188.4 Кбайт 70 ₽
pdf
Промежуточный тест 2
189.3 Кбайт 70 ₽
pdf
Промежуточный тест 9
161.3 Кбайт 70 ₽
pdf
Промежуточный тест 1
170.5 Кбайт 70 ₽
pdf
Промежуточный тест 4
171 Кбайт 70 ₽
pdf
Промежуточный тест 3
198.2 Кбайт 70 ₽
pdf
Промежуточный тест 6
184 Кбайт 70 ₽
pdf
Промежуточный тест 11
180.6 Кбайт 70 ₽
Всего 12 файлов на сумму 840 рублей
Описание

Всем доброго времени суток! Здесь находятся все промежуточные тесты по разделу Физика 2 для ТГУ Росдистант (выполнены в этом году, являются актуальными).

  1. Закон Кулона. Напряженность электростатического поля. Силовые линии — Промежуточный тест 1
  2. Поток вектора напряженности ЭСП. Теорема Гаусса для поля в вакууме — Промежуточный тест 2
  3. Потенциал. Циркуляция вектора напряженности поля. Напряженность как градиент потенциала — Промежуточный тест 3
  4. Проводники в электростатическом поле — Промежуточный тест 4
  5. Постоянный электрический ток, его характеристики. Закон Ома. ЭДС и работа источника тока. Закон Джоуля-Ленца. Правила Кирхгофа — Промежуточный тест 5
  6. Магнитное поле в вакууме. Принцип суперпозиции. Закон Био-Савара-Лапласа — Промежуточный тест 6
  7. Основные законы магнитного поля — Промежуточный тест 7
  8. Явление электромагнитной индукции — Промежуточный тест 8
  9. Взаимная индукция — Промежуточный тест 9
  10. Электрическое поле в веществе — Промежуточный тест 10
  11. Магнитное поле в веществе — Промежуточный тест 11
  12. Основы теории Максвелла — Промежуточный тест 12
Оглавление

Промежуточный тест 1

Расстояние между зарядами Q1 = 2 нКл и Q2 = 4 нКл равно d = 60 см. Определить точку, в которую нужно поместить заряд Q3 так, чтобы система зарядов находилась в равновесии.

Ответ:

Четыре одинаковы заряда q1 = q2 = q3 = q4 = 40 нКл закреплены в вершинах квадрата со стороной a = 10 см. Найти силу F, действующую на один из этих зарядов со стороны трех остальных.

Ответ:

Три одинаковых точечных заряда Q1 = Q2 = Q3 = 2 нКл находятся в вершинах равностороннего треугольника со сторонами a = 10 см. Определить модуль и направление силы F, действующей на один из зарядов со стороны двух других.

Ответ:

В вершинах квадрата находятся одинаковые заряды q1 = q2 = q3 = q4 = 8 ∙ 10–10 Кл. Какой отрицательный заряд q нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда?

Ответ:

Два положительных точечных заряда Q и 9Q закреплены на расстоянии d = 100 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд так, чтобы он находился в равновесии.

Ответ:

Подвешенный на длинную непроводящую нить маленький шарик, несущий заряд q = 10–8 Кл, находится в однородном горизонтальном электрическом поле. Нить составляет угол α = 45° с вертикалью, а масса шарика равна m = 0,5 г. Чему равна напряженность электрического поля E?

Ответ:

Точечные заряды Q1 = 30 мкКл и Q2 = –20 мкКл находятся на расстоянии d = 20 см друг от друга. Определить напряженность электрического поля E в точке, удаленной от Q1 на расстояние r1 = 30 см, а от Q2 на r2 = 15 см.

Ответ:

Два металлических шарика с радиусами R1 = 20 см и R2 = 50 см, заряженные зарядами q1 = 2 ∙ 10–8 Кл и q2 = 6 ∙ 10–8 Кл соответственно, соединили тонкой металлической проволокой. Расстояние между шариками много больше их радиусов. Найти заряд на первом шарике.

Ответ:

Два одинаково заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол α. Шарики погружают в масло. Какова плотность масла ρ, если угол расхождения нитей при погружении в масло остается неизменным? Плотность материала шариков ρ0 = 1,5 ∙ 103 кг/м3, диэлектрическая проницаемость масла ε = 2,2.

Ответ:

В вершинах правильного треугольника со стороной a = 10 см находятся заряды Q1 = 10 мкКл, Q2 = 20 мкКл и Q3 = 30 мкКл. Определить силу F, действующую на заряд Q1 со стороны зарядов Q2 и Q3.

Ответ:

На расстоянии d = 20 см находятся два точечных заряда: Q1 = –50 нКл и Q2 = 100 нКл. Определить силу F, действующую на заряд Q3 = –10 нКл, удаленный от Q1 и Q2 на одинаковое расстояние, равное d.

Ответ:


Промежуточный тест 2

Тонкое кольцо несет распределенный заряд q = 0,2 мкКл. Определить напряженность электрического поля E, созданного распределенным зарядом в точке A, которая равноудалена от всех точек кольца на расстояние r = 20 см. Радиус кольца R = 10 см.

Ответ:

Электрон с энергией = 400 эв движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R = 10 см. Определить минимальное расстояние a, на которое приблизится электрон к поверхности сферы, если заряд ее составляет q = –10 нКл.

Ответ:

Тонкий бесконечный стержень, ограниченный с одной стороны, равномерно заряжен с линейной плотностью λ = 0,5 мкКл/м. Определить напряженность электрического поля E, созданного распределенным зарядом в точке M, лежащей на оси стержня на расстоянии a = 20 см от его начала.

Ответ:

Две параллельные плоскости заряжены равномерно разноименно с поверхностной плотностью σ = 8,85 нКл/м2. Найти напряженность электрического поля в точке В, если расстояния r одинаковы.

Ответ:

По тонкому кольцу радиусом R = 20 см равномерно распределен с линейной плотностью λ = 0,2 мкКл/м заряд. Определить напряженность электрического поля E, созданного зарядом в точке A, находящейся на оси кольца на расстоянии h = 2R от его центра.

Ответ:

По тонкому полукольцу радиусом R = 10 см равномерно распределен заряд с линейной плотностью λ = 1 мкКл/м. Определить напряженность электрического поля E, созданного этим зарядом в точке O, совпадающей с центром кольца.

Ответ:

Найти поток вектора напряженности электрического поля ФE, созданного двумя точечными зарядами +q и –q, через замкнутую поверхность в виде куба, указанного на рисунке.

Ответ:

Определить поток вектора напряженности электрического поля ФE, созданного заряженной полусферой, через сферическую поверхность радиусом R (см. рис.), если заряд полусферы q = 8,85 ∙ 10–9 Кл.

Ответ:

Электрическое поле создано бесконечной заряженной прямой нитью с равномерно распределенным зарядом λ = 10 нКл/м. Определить кинетическую энергию Ek2 электрона в точке 2, если в точке 1 его кинетическая энергия Ek1 = 200 эВ (рис.).

Ответ:

Две трети тонкого кольца радиусом R = 10 см несут равномерно распределенный с линейной плотностью λ = 0,2 мкКл/м заряд. Определить напряженность электрического поля E, созданного распределенным зарядом в точке O, совпадающей с центром кольца.

Ответ:


Промежуточный тест 3

Какую min скорость υmin должен иметь протон, чтобы он мог достигнуть поверхности заряженного до потенциала φ = 400 В металлического шара?

Ответ:

Поле образовано диполем с электрическим дипольным моментом p = 200 пКлЧм. Определить разность потенциалов двух точек поля, расположенных симметрично относительно диполя на его оси на расстоянии r = 40 см от центра диполя.

Ответ:

Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом φ1 = 100 В электрон имел скорость υ1 = 6 Ч 10-3 м/с. Определить потенциал точки поля φ2, дойдя до которой электрон потеряет половину своей скорости.

Ответ:

Электрическое поле создано заряженным шаром, радиусом R и потенциалом φ = 300 В. Определить работу сил поля A при перемещении заряда Q = 0,2 мкКл из точки r1 = 4R , находящейся на расстоянии от центра шара, в точку r2 = 2R.

Ответ:

Две параллельные заряженные плоскости, поверхностная плотность заряда которых составляет σ1 = 2 мкКл/м2 и σ2 = –0,8 мкКл/м2, находятся на расстоянии d = 0,6 см друг от друга. Определить разность потенциалов между плоскостями.

Ответ:

Диполь с электрическим моментом p = 100 пКлЧм находится в однородном электрическом поле напряженностью E = 200 кВ/м. Определить работу внешних сил A, которую необходимо совершить для поворота диполя на угол α = 1800.

Ответ:

На рисунке показано: электрическое поле создано зарядами Q1 = 2 мкКл и Q2 = –2 мкКл, находящимися на расстоянии a = 10 см друг от друга. Определить работу сил поля A, что осуществляется при перемещении заряда Q = 0,5 мкКл из точки 1 в точку 2.

Ответ:

В вершинах А и В квадрата ABCD со стороной а = 12 см находятся одноименные заряды q1 = 2 Ч 10-3 Кл и q2 = 6 Ч 10-3 Кл. Найти разность потенциалов между точками С и D.

Ответ:

Тонкая квадратная рамка равномерно заряжена с линейной плотностью заряда λ = 200 пКл/м. Определить потенциал поля φ в точке пересечения диагоналей.

Ответ:

Четыре одинаковые капли ртути, заряженные до потенциала φ = 10 В, сливаются в одну. Определить потенциал образовавшейся капли φк.

Ответ:

Тонкий стержень согнут в кольцо радиусом R = 10 см. Он равномерно заряжен с линейной плотностью λ = 800 нКл/м. Определить потенциал φ в точке, расположенной на оси кольца на расстоянии h = 10 см от его центра.

Ответ:

Электрическое поле образовано бесконечно длинной заряженной нитью, линейная плотность заряда которой λ = 20 пКл/м. Определить разность потенциалов двух точек поля, находящихся от нити на расстоянии r1 = 8 см и r2 = 12 см.

Ответ:

Два точечных заряда Q1 = 6 нКл и Q2 = 3 нКл находятся на расстоянии d = 60 см друг от друга. Какую работу A необходимо совершить внешним силам, чтобы уменьшить расстояние между зарядами в 2 раза?

Ответ:

Пылинка массой m = 0,2 кг, с зарядом q = 40 нКл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов U = 200 В пылинка стала двигаться со скоростью υ = 10 м/с. Определить скорость пылинки V0 до того, как она влетела в поле.

Ответ:


Промежуточный тест 4

Два металлических шарика радиусами R1 = 5 см и R2 = 10 см имеют заряды Q1 = 40 нКл и Q2 = –20 нКл соответственно. Найти энергию W, которая выделится при разряде, если шары соединить проводником. Емкостью проводника пренебречь.

Ответ:

Электрон, прошедший в плоском конденсаторе путь от одной пластины до другой, имеет скорость υ = 105 м/с. Расстояние между пластинами d = 8 мм. Найти разность потенциалов между пластинами плоского конденсатора.

Ответ:

Плоский конденсатор с площадью пластин S = 200 см2 каждая заряжен до разности потенциалов U = 2 кВ. Расстояние между пластинами d = 2 см. Диэлектрик – стекло. Определить энергию поля конденсатора W и плотность энергии поля ω.

Ответ:

Плоский воздушный конденсатор электроемкостью C = 1,11 нФ заряжен до разности потенциалов U = 300 В. После отключения от источника тока расстояние между пластинами конденсатора увеличили в 5 раз. Определить: а) разность потенциалов U на обкладках конденсатора; б) работу A внешних сил.

Ответ:

Пространство между пластинами плоского конденсатора заполнено диэлектриком (фарфор), объем которого равен V = 100 см3. Поверхностная плотность заряда на пластинах конденсатора равна σ = 8,85 нКл/м2. Определить работу A, которую нужно совершить, чтобы удалить диэлектрик из конденсатора. Трением диэлектрика и пластин пренебречь.

Ответ:

Конденсаторы емкостью С1 = 2 мкФ, С2 = 5 мкФ и С3 = 10 мкФ соединены последовательно и находятся под напряжением U = 850 В. Определить заряд на каждом из конденсаторов.

Ответ:

Конденсатор емкостью С1 = 10 мкФ заряжен до напряжения U = 10 В. Определить, чему равен заряд q на обкладках этого конденсатора после того, как параллельно к нему был подключен другой, незаряженный конденсатор электроемкостью С2 = 20 мкФ.

Ответ:

Конденсаторы емкостью С1 = 5 мкФ и С2 = 10 мкФ заряжены до напряжений U1 = 60 В и U2 = 100 В соответственно. Определить напряжение U на обкладках конденсаторов после их соединения обкладками, имеющими одноименные заряды.

Ответ:

Два конденсатора емкостью C1 = 5 мкФ и C2 = 8 мкФ соединены последовательно и присоединены к батарее с ЭДС ε = 80 В. Определить разности потенциалов U1 и U2 между их обкладками.

Ответ:

Какое количество теплоты Q выделится при разрядке плоского конденсатора, если разность потенциалов между пластинами равна U = 15 кВ, расстояние d = 1 мм, диэлектрик – слюда, площадь каждой пластины S = 300 см2?

Ответ:

Плоский воздушный конденсатор состоит из двух круглых пластин радиусом r1 = r2 = 10 см. Расстояние между пластинами d1 = 1 см. Конденсатор зарядили до разности потенциалов U = 1,2 кВ и отключили от источника тока. Какую работу A нужно совершить, чтобы, удаляя пластины друг от друга, увеличить расстояние между ними до d2 = 3,5 см?

Ответ:

Расстояние между пластинами плоского конденсатора равно d = 2 см, разность потенциалов U = 6 кВ. Заряд каждой пластины равен q = 10 нКл. Определить энергию W поля конденсатора.

Ответ:

Плоский конденсатор состоит из двух круглых пластин радиусом R = 10 см каждая. Расстояние между пластинами d = 2 мм. Конденсатор соединен с источником напряжения U = 80 В. Определить заряд q и напряженность поля E конденсатора, если диэлектрик – воздух.

Ответ:

Промежуточный тест 5

Две электрические лампочки с сопротивлениями R1 = 360 Ом, R2 = 240 Ом включены в цепь параллельно. Найти отношение мощностей, которые они потребляют.

Ответ:

Две группы из трех последовательно соединенных элементов соединены параллельно. ЭДС каждого элемента равна ε = 1,2 В, внутреннее сопротивление r = 0,2 Ом. Батарея замкнута на внешнее сопротивление R = 1,5 Ом. Найти силу тока I во внешнем круге.

Ответ:

Определить плотность тока j в железном проводнике длиной l = 10 м, если он находится под напряжением U = 6 В.

Ответ:

В сеть с напряжением U = 100 В подключили последовательно катушку с сопротивлением R1 = 2 Ом и вольтметр. Вольтметр показывает напряжение U1 = 80 В. Когда катушку заменили, вольтметр показал напряжение U2 = 60 В. Определить сопротивление R2 другой катушки.

Ответ:

В медном проводнике объемом V = 6 см3 при прохождении по нему постоянного тока за время t = 1 мин выделилось количество теплоты Q = 216 Дж. Определить напряженность E электрического поля в проводнике.

Ответ:

ЭДС батареи составляет ε = 12 В. При силе тока I = 4 А, КПД батареи равен η = 0,6. Определить внутреннее сопротивление батареи r.

Ответ:

В круг включены последовательно медная и стальная проволоки. Их длины и площади сечений одинаковы. Найти отношение количеств теплоты, которое выделяется в проволоках при прохождении тока.

Ответ:

При включении электромотора в сеть с напряжением U = 220 В он потребляет ток I = 5 А. Определить мощность P, используемую мотором и его КПД, если сопротивление обмотки мотора равно R = 6 Ом.

Ответ:

ЭДС батареи ε = 24 В. Максимальная сила тока, которую может дать батарея, Imax = 10 А. Определить max мощность Pmax, которая может выделиться во внешней электрической цепи.

Ответ:

ЭДС батареи ε = 80 В, внутреннее сопротивление r = 5 Ом. Внешняя электрическая цепь потребляет мощность P = 100 Вт. Определить силу тока в цепи I, напряжение U, под которым находится внешняя цепь.

Ответ:

Катушка и амперметр соединены последовательно и подключены к источнику тока. К клеммам катушки присоединен вольтметр с сопротивлением r = 4 кOм. Амперметр показывает силу тока I = 0,3 А, вольтметр – напряжение U = 120 В. Определить сопротивление катушки R.

Ответ:

Две батареи аккумуляторов ε1 = 10 В, r1 = 1 Ом; ε2 =8, r2 = 2 Ом и реостат R = 6 Ом соединены, как показано на рисунке. Найти силы тока I1 и I2 в батареях.

Ответ:

По проводнику сопротивлением R = 3 Ом течет ток, сила которого возрастает. Количество теплоты, выделившееся в проводнике за время t = 8 с, равно Q = 200 Дж. Определить заряд q, проходящий за это время вдоль проводника. В начальный момент времени сила тока I0 = 0.

Ответ:

Сила тока в проводнике сопротивлением R = 100 Ом равномерно убывает от I0 = 10 A до I = 0 A за время t = 30 сек. Определить количество теплоты Q, которое выделится за это время в проводнике.

Ответ:

При внешнем сопротивлении R1 = 8 Ом сила тока в электрической цепи I1 = 0,8 А, при сопротивлении R2 = 15 Ом сила тока I2 = 0,5 А. Определить Iк.з. – силу тока короткого замыкания источника ЭДС.

Ответ:

Промежуточный тест 6

По бесконечно длинному проводу, согнутому так, как это показано на рисунке, проходит ток I = 200 А. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см.

Ответ:

Определить магнитную индукцию поля, создаваемого отрезком бесконечно длинного провода в точке, равноудаленной от концов отрезка и находящейся на расстоянии R = 4 см от его середины. Длина отрезка проволоки l = 20 см, сила тока в проводе I = 10 А.

Ответ:

Бесконечно длинный провод с током I = 100 А изогнут так, как это показано на рисунке. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см.

Ответ:

По двум скрещенным под прямым углом бесконечно длинным проводам, как показано на рисунке, проходят токи I и 2I (I = 100 А). Определить магнитную индукцию В в точке А, если расстояние R = 10 см.

Ответ:

По бесконечно длинному проводу, согнутому так, как это показано на рисунке, проходит ток I = 200 А. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см.

Ответ:

По тонкому кольцу радиусом R = 20 см течет ток I = 100 А. Определить магнитную индукцию В на оси кольца в точке А, как это показано на рисунке, если угол β = π/3.

Ответ:

Бесконечно длинный провод с током I = 50 А изогнут так, как это показано на рисунке. Определить магнитную индукцию В в точке А, лежащей на биссектрисе прямого угла на расстоянии d = 10 см от его вершины.

Ответ:

Промежуточный тест 7

Альфа-частица прошла ускоряющую разность потенциалов U = 300 В и, попав в однородное магнитное поле, стала двигаться по винтовой линии радиусом R = 1 см и шагом h = 4 см. Определить магнитную индукцию B поля.

Ответ:

По тонкому проводящему полукольцу радиусом R = 50 см течет ток I = 1 А. Перпендикулярно плоскости полукольца возбуждено однородное магнитное поле с индукцией В = 0,01 Тл. Определить силу, растягивающую полукольцо. Действие магнитного поля на провода, подводящие ток к полукольцу, и взаимодействие отдельных элементов полукольца не учитывать.

Ответ:

В однородном магнитном поле с индукцией В = 0,2 Тл находится прямой проводник длиной l = 15 см, по которому проходит ток I = 5 А. На проводник действует сила F = 0,13 Н. Определить угол между направлениями тока и вектором магнитной индукции.

Ответ:

Плоский контур, площадь которого равна S = 300 см2, находится в однородном магнитном поле с индукцией В = 0,01 Тл. Плоскость контура перпендикулярна к линиям индукции. В контуре поддерживается постоянный ток силой 1 = 10 А. Определить работу внешних сил, нужную для перемещения контура с током в область пространства, магнитное поле в которой отсутствует.

Ответ:

Магнитное (В = 2 мТл) и электрическое (Е = 1,6 кВ/м) поля направлены одинаково. Перпендикулярно их векторам и влетает электрон со скоростью u = 0,8 мм/с. Определить ускорение электрона в момент, когда он влетел в эти поля.

Ответ:

Ион, попав в магнитное поле (В = 0,01 Тл), стал двигаться по кругу. Определить кинетическую энергию этой частицы, если магнитный момент эквивалентного кругового тока равен рm = 1,6 Ч 10–14 AЧм2.

Ответ:

По двум параллельным прямым проводам длиной l = 2,5 м каждый, находящимся на расстоянии d = 20 см друг от друга, проходят одинаковые токи силой I = 1 кА. Определить силу взаимодействия токов.

Ответ:

Определить индукцию магнитного поля B в центре проволочной квадратной рамки со стороной а = 15 см, если по рамке проходит ток I = 5 А.

Ответ:

Круговой контур из проволоки радиусом r = 5 см и током I = 1 А находится в магнитном поле, причем плоскость контура перпендикулярна направлению поля. Напряженность поля равна H = 10 кА/м. Определить работу, которую необходимо выполнить, чтобы повернуть контур на угол вокруг оси, совпадающей с диаметром контура.

Ответ:

Электрон, имеющий скорость u = 1 мм/с, влетает в однородное магнитное поле под углом а = 600 с направлением поля и начинает двигаться по винтовой линии. Напряженность магнитного поля Н = 1,5 кА/м. Определить: 1) шаг винтовой линии; 2) ее радиус.

Ответ:

По тонкому проводу, согнутому в виде прямоугольника, проходит ток силой I = 60 А. Длины сторон прямоугольника равны а = 30 см и b = 40 см. Определить магнитную индукцию В в точке пересечения диагоналей прямоугольника.

Ответ:

В однородном магнитном поле перпендикулярно линиям индукции расположен плоский контур площадью S = 100 см2. Поддерживая в контуре постоянную силу тока I = 50 А, его переместили из поля в область пространства, где поле отсутствует. Определить магнитную индукцию В поля, если при перемещении контура была выполнена работа А = 0,4 Дж.

Ответ:

Промежуточный тест 8

В магнитном поле, меняющемся по закону B = B0cos wt

(B0 = 0,1 Тл, ω = 4 с–1), размещена квадратная рамка со стороной а = 50 см, причем нормаль к рамке образует с направлением поля угол α = 450. Определить ЭДС индукции, возникающей в рамке, в момент времени t = 5 с.

Ответ:

На картонный каркас длиной l = 50 см и площадью сечения, равной S = 4 см2, намотан в один слой провод диаметром d = 0,2 мм так, что витки плотно прилегают друг к другу (толщиной изоляции пренебречь). Вычислить индуктивность L полученного соленоида.

Ответ:

Соленоид с площадью сечения S = 10 см2 имеет N = 103 витков. При силе тока I = 5 А магнитная индукция поля внутри соленоида равна В = 0,05 Тл. Определить индуктивность L соленоида.

Ответ:

Рамка площадью S = 200 см2 равномерно вращается с частотой ν = 10 с–1 относительно оси, лежащей в плоскости рамки, и перпендикулярна линиям индукции однородного магнитного поля (В = 0,2 Тл). Найдите среднее значение ЭДС индукции за время, в течение которого магнитный поток, пронизывающий рамку, изменится от нуля до максимального значения.

Ответ:

Магнитная индукция поля между полюсами двухполюсного генератора равна В = 0,8 Тл. Ротор имеет N = 100 витков площадью S = 400 см2. Определить частоту вращения якоря, если максимальное значение ЭДС индукции = 200 В.

Ответ:

В однородное магнитное поле с индукцией В = 0,3 Тл помещена прямоугольная рамка с подвижной стороной, длина которой l = 15 см. Определить ЭДС индукции, возникающей в рамке, если ее подвижная сторона перемещается перпендикулярно к линиям магнитной индукции со скоростью ϑ = 10 м/с.

Ответ:

Определить магнитный поток через поперечное сечение катушки (без сердечника), если на каждом сантиметре длины N = 8 витков. Радиус соленоида r = 2 см, а сила тока в нем I = 2 А.

Ответ:

Магнитная индукция поля между полюсами двухполюсного генератора равна В = 1 Тл. Ротор имеет N = 140 витков, площадь каждого витка S = 500 см2. Определить частоту вращения якоря, если максимальное значение ЭДС индукции равно.

Ответ:

Промежуточный тест 9

Определите коэффициент взаимной индукции L12 обмоток трансформатора с числом витков N1 = 1000 и N2 = 2000 и магнитной проницаемостью сердечника µ = 3. Сердечник является замкнутым и односвязным, с длиной l = 100 мм и площадью поперечного сечения S = 10 мм2.

Ответ:

В проводное кольцо, присоединенное к баллистическому гальванометру, внесли прямой магнит. При этом по электрическому кругу прошел заряд Q = 50 мкКл. Определить изменение магнитного потока ΔФ через кольцо, если сопротивление гальванометра R = 10 Ом.

Ответ:

На один сердечник намотаны две катушки. Индуктивности их равны соответственно L1 = 0,5 Гн и L2 = 0,7 Гн. Чему равна их взаимная индуктивность в отсутствие рассеяния магнитного потока?

Ответ:

Соленоид длинной l = 100 мм с числом витков N = 100 и сечением S = 1 мм2 подключен к батарее с ЭДС ε = 2 В через некоторое сопротивление R = 2 Ом. В соленоид вставлен сердечник из сверхпроводника той же длины, но с сечением 5/2. Сердечник быстро вынимают из соленоида за время t = 0,05 с. Определить силу тока в цепи.

Ответ:

Источник тока замкнули на катушку сопротивлением R = 20 Ом. Через время t = 0,1 с сила тока в катушке достигла предельного значения І = 0,95A. Определить индуктивность катушки L.

Ответ:

Электрическая цепь состоит из катушки индуктивности L = 0,1 Гн и источника тока. Источник тока отключили, не разрывая электрическую цепь. Время, за которое сила тока уменьшилась до 0,001 от первоначального значения, равно t = 0,07 с. Определить сопротивление катушки.

Ответ:

В катушке длиной l = 0,5 м, диаметром d = 5 см и числом витков N = 1500 ток равномерно увеличивается на в секунду. На катушку надето кольцо из медной проволоки (ρ = 17 нОм∙м) площадью сечения S0 = 3 мм2. Определить силу тока в кольце.

Ответ:

Две одинаковых небольших катушки расположены так, что их оси лежат на одной прямой (см. рисунок). Расстояние между катушками l = 10 см существенно превышает их линейные размеры. Число витков N = 315, площадь витков S = 10 см2. Чему равен коэффициент взаимной индукции катушек L1,2?

Ответ:

Промежуточный тест 10

Между пластинами плоского конденсатора, заряженного до разности потенциалов U = 600 В, находятся два слоя диэлектриков: стекло, толщиной d1 = 7 мм, и эбонит, толщиной d2 = 3 мм. Найти электрическое смещение через напряженность поля в каждом слое.

Ответ:

Рассчитать напряженность поля внутри плоской пластины диэлектрика, помещённой в однородное электростатическое поле (D = D0 = σ) с диэлектрической проницаемостью ε = 3 и напряжённостью E0 = 15 В/м.

Ответ:

Два одинаковых плоских воздушных конденсатора соединены последовательно и подключены к источнику ЭДС. Внутрь одного из них вносят диэлектрик с диэлектрической проницаемостью ε = 2, заполняющий все пространство между обкладками. Во сколько раз изменится напряженность электрического поля в этом конденсаторе?

Ответ:

В некоторой точке изотропного диэлектрика с проницаемостью ε = 3 электрическое смещение имеет значение D = 15 мкКл/м2. Чему равна поляризованность Р в этой точке?

Ответ:

В однородное электрическое поле с напряжённостью Е0 = 100 В/м помещена бесконечная плоскопараллельная пластина из однородного и изотропного диэлектрика с проницаемостью ε = 2. Пластина расположена перпендикулярно к Е0. Определить: 1) электрическое смещение D внутри пластины; 2) поляризованность диэлектрика Р.

Ответ:

Между обкладками плоского конденсатора, заряженного до разности потенциалов U = 1,5 кВ, зажата парафиновая пластинка (ε = 2) толщиной d = 5 мм. Определить поверхностную плотность связанных зарядов на парафине.

Ответ:

Промежуточный тест 11

Индукция магнитного поля в железном стержне B = 1,2 Тл. Определить для него намагниченность, если зависимость B от H для данного сорта ферромагнетика представлена на рисунке.

Ответ:

Напряженность магнитного поля в меди равна Н = 1 МА/м. Определить намагниченность J меди и магнитную индукцию В, если известно, что удельная магнитная восприимчивость χуд = – 1,1 Ч 10–9 м3/кг.

Ответ:

Электрон в атоме водорода движется по круговой орбите. Определить отношение магнитного момента рт эквивалентного кругового тока к моменту импульса L орбитального движения электрона.

Ответ:

Соленоид, находящийся в диамагнитной среде, имеет длину l = 30 см, площадь поперечного сечения S = 15 см2 и число витков N = 500. Индуктивность соленоида L = 1,5 мГн, а сила тока, протекающего по нему, I = 1 А. Определить магнитную индукцию внутри соленоида и намагниченность внутри соленоида.

Ответ:

Длинный однородный цилиндр изготовлен из материала с "замороженной" однородной намагниченностью, вектор которой параллелен его оси. Индукция в точке А оказалась равной ВА = 0,1 Тл (см. рис.). Найти индукцию В вблизи торца короткого цилиндра, изготовленного из того же материала, если h/D = 5 Ч 10–2.

Ответ:

На железном сердечнике в виде тора со средним диаметром d = 70 мм намотана обмотка с общим числом витков N = 600. В сердечнике сделана узкая поперечная прорезь шириной b = 1,5 мм. При силе тока через обмотку I = 4 А магнитная индукция в прорези B0 = 1,5 Тл. Пренебрегая рассеянием поля на краях прорези, определите магнитную проницаемость железа для данных условий.

Ответ:

В однородное магнитное поле с индукцией В0 = 25 Тл помещена бесконечная плоскопараллельная пластина из однородного изотропного магнетика с проницаемостью μ = 5. Пластина расположена перпендикулярно к линиям индукции. Определить напряженность магнитного поля Н в магнетике.

Ответ:

Обмотка тороида с железным сердечником имеет N = 151 виток. Средний радиус тороида составляет r = 3 см. Сила тока через обмотку равна I = 1 А. Определить для этих условий: 1) индукцию магнитного поля внутри тороида; 2) намагниченность сердечника. Использовать график зависимости B от Н, приведенный на рисунке.

Ответ:

Промежуточный тест 12

Тонкое кольцо радиусом R = 20 см, несущее равномерно распределенный заряд Q = 45 мкКл, движется с постоянной скоростью ϑ = 15 м/с. Плоскость кольца все время остается ортогональной направлению движения. Вычислить максимальное значение плотности тока смещения.

Ответ:

Напряженность электрического поля в зазоре между обкладками конденсатора площадью S = 1 см2, заполненного диэлектриком с ε = 1000, изменяется по закону E = (0,1 + 0,17t) · 106 В/м·с. Определить силу тока смещения в таком электрическом поле.

Ответ:

Длинный соленоид (длина l = 50 мм, радиус r = 20 мм, число витков N = 2000) подключается к источнику постоянной ЭДС ε = 24 В через сопротивление R = 1 Ом (сопротивлением самого соленоида можно пренебречь). Найти электромагнитную энергию, втекающую в соленоид в процессе установления тока.

Ответ:

В однородной и изотропной среде с ε = 3,00 и μ = 1,00 распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны Еm = 10,0 В/м. Найти: 1) амплитуду напряженности магнитного поля волны; 2) фазовую скорость волны.

Ответ:

Плоский воздушный конденсатор, обкладками которого являются два одинаковых диска, заряжен до высокой разности потенциалов, а затем отключен от источника напряжения. В центре конденсатора происходит пробой – по оси проскакивает электрическая искра и, как следствие, конденсатор разряжается. Считая разряд квазистационарным и пренебрегая краевыми эффектами, определить полный поток электромагнитной энергии, вытекающий за время разряда из пространства между обкладками.

Ответ:

При разрядке длинного цилиндрического конденсатора длиной l = 1 см и внешним радиусом R = 1 см в подводящих проводниках течет ток проводимости силой I = 1 · 10–7 А. Определить плотность тока смещения в диэлектрике между обкладками конденсатора.

Ответ:

Обкладки плоского конденсатора имеют форму дисков радиуса R = 20 мм. Расстояние между дисками d << R. Пространство между ними заполнено однородным диэлектриком с диэлектрической и магнитной проницаемостями ε = 4 и μ = 4. Конденсатор включен в цепь переменного тока I = I0 cos ωt, с частотой ν = 50 Гц. Пренебрегая краевыми эффектами, определить отношение максимальной магнитной энергии в конденсаторе к максимальной электрической.

Ответ:

При разрядке плоского конденсатора, площадь обкладок которого S = 10 см2, заполненного диэлектриком с ε = 103, в подводящих проводах течет ток I = 1 мкА. Определить скорость изменения напряженности электрического поля в конденсаторе.

Ответ:

Вам подходит эта работа?
Похожие работы
Другие работы автора
Физика
Лабораторная работа Лабораторная
17 Янв в 14:08
46
0 покупок
Физика
Лабораторная работа Лабораторная
17 Янв в 14:07
32
0 покупок
Физика
Лабораторная работа Лабораторная
17 Янв в 14:06
51
0 покупок
Геология
Контрольная работа Контрольная
9 Янв в 18:39
97 +1
0 покупок
ТОЭ - Теоретические основы электротехники
Лабораторная работа Лабораторная
9 Янв в 12:30
56
0 покупок
ТОЭ - Теоретические основы электротехники
Контрольная работа Контрольная
9 Янв в 12:23
74
0 покупок
Основания и фундаменты
Контрольная работа Контрольная
9 Янв в 11:21
84
0 покупок
Предыдущая работа
Темы журнала
Показать ещё
Прямой эфир