1) Дано множество U из n элементов. Каким числом способов в нем можно выбрать три подмножества A, B, C так, чтобы выполнялись заданные условия: n=7, |(A-B)VC| =1, |B-(AVC)|=3
2)Сколькими способами можно переставить буквы слова:
«колокола», чтобы две буквы «о» не шли подряд;
3)На одной из кафедр университета работают S человек, среди которых
Tчеловек не знают ни одного иностранного языка. A человек знают английский,
N – немецкий, F – французский. AN знают английский и немецкий, AF –
английский и французский, NF – немецкий и французский, ANF знают все три языка.По заданным условиям восстановить недостающую информацию: S=17, A=13, N=6, F=4, AN=6, AF=3, NF=2, ANF=?, T=3
4)Решите рекуррентное уравнение с начальными условиями:
Xn=4Xn-1 - 3Xn-2, X0=1, X1=3