Задание (Вариант №1)
1. Дано нелинейное дифференциальное уравнение. Необходимо:
а) линеаризовать уравнение вблизи точки статического режима путем
разложения в ряд Тейлора;
б) решить линеаризованное уравнение при нулевых начальных условиях;
в) по линеаризованному уравнению записать передаточную функцию.
2. Используя свойства преобразования Лапласа и приложение 1, найти
изображение по Лапласу для заданной функции.
3. Дано уравнение в прямых разностях. Необходимо:
а) перейти от уравнения, использующего прямые разности, к уравнению
с применением оператора сдвига;
б) решить это уравнение при нулевых начальных условиях;
в) записать импульсную передаточную функцию;
г) решить разностное уравнение с применением z-преобразования.
4. Используя свойства z-преобразования и приложение 1, найти z-
изображение заданной функции.
Исходные данные для варианта №1 приведены в приложении 4 на стр.55 учебно-методического пособия.
Гарантия на работу | 1 год |
Средний балл | 4.96 |
Стоимость | Назначаете сами |
Эксперт | Выбираете сами |
Уникальность работы | от 70% |