Вариант на букву М
Определить собственные значения и собственные векторы матрицы третьего порядка.
Доказать совместность системы и решить её тремя способами: по формулам Крамера, методом Гаусса и средствами матричного исчисления.
Исследовать и найти общее решение системы линейных однородных уравнений.
Составить уравнение плоскости Р, проходящей через точку А перпендикулярно вектору . Написать ее общее уравнение, а также нормальное уравнение плоскости и уравнение плоскости в отрезках. Составить уравнение плоскости , проходящей через точки А, В, С. Найти угол между плоскостями Р и . Найти расстояние от точки D до плоскости Р.
Прямая l задана в пространстве общими уравнениями. Написать её каноническое и параметрическое уравнения. Составить уравнение прямой , проходящей через точку М параллельно прямой l, и вычислить расстояние между ними. Найти проекцию точки М на прямую l и точку пересечения прямой l и плоскости Р.
Даны координаты вершин треугольника АВС. Составить уравнения сторон треугольника. Составить уравнения медианы, высоты и биссектрисы угла А, найти их длины. Составить уравнения прямых, проходящих через вершины треугольника и параллельных его сторонам.
По координатам вершин пирамиды АВСD средствами векторной алгебры найти:
1) длины ребер АВ и АС;
2) угол между ребрами АВ и АС;
3) площадь грани АВС;
4) проекцию вектора АВ на АС ;
5) объем пирамиды.
Построить графики функций.
Записать уравнения кривых в полярных координатах и построить их.
Вычислить пределы функций, не пользуясь средствами дифференциального исчисления.
Исследовать на непрерывность функции, найти точки разрыва и определить их тип. Построить схематические графики функций.
Гарантия на работу | 1 год |
Средний балл | 4.96 |
Стоимость | Назначаете сами |
Эксперт | Выбираете сами |
Уникальность работы | от 70% |