1. Для нахождения 95% доверительного интервала для разности средней продолжительности родов у рожениц, получавших гель с простагландином Е2 и получавших плацебо, необходимо использовать двухвыборочный t-критерий Стьюдента.
Сначала нужно найти выборочное среднее и стандартное отклонение для каждой группы:
- Группа с гелем простагландина Е2: x1 = 8.5 ч, s1 = 4.7 ч
- Контрольная группа: x2 = 13.9 ч, s2 = 4.1 ч
Затем можно найти t-значение и границы доверительного интервала:
- t-значение = -2.51 (при использовании двухвыборочного t-критерия Стьюдента с 40 степенями свободы и уровнем значимости 0.05)
- Границы доверительного интервала: (-8.19, -2.31) ч
Таким образом, на основании доверительного интервала можно сделать вывод о том, что средняя продолжительность родов в группе, получавшей гель с простагландином Е2, значимо меньше, чем в контрольной группе, получавшей плацебо.
2. Для проверки значимости различий между средними результатами анализов двумя методами воспользуемся двухвыборочным t-критерием Стьюдента для независимых выборок. Сначала нужно найти выборочное среднее и стандартное отклонение для каждого метода:
- Первый метод: x1 = 18.375, s1 = 3.382
- Второй метод: x2 = 21.125, s2 = 4.988
Затем можно найти t-значение и p-значение:
- t-значение = -2.08 (при использовании двухвыборочного t-критерия Стьюдента с 6 степенями свободы и уровнем значимости 0.05)
- p-значение = 0.076
Так как p-значение больше уровня значимости 0.05, мы не можем отвергнуть нулевую гипотезу о равенстве средних результатов анализов двумя методами. Следовательно, на уровне значимости 0.05 различия не являются статистически значимыми.
3. Для проверки статистической значимости различий между уровнем ХЛПВП у трех групп людей можно воспользоваться однофакторным дисперсионным анализом (ANOVA). Сначала нужно найти выборочное среднее и стандартное отклонение для каждой группы:
- Группа, не занимающаяся спортом: x1 = 43.3 мг%, s1 = 14.2 мг%
- Группа, занимающаяся бегом трусцой: x2 = 58.0 мг%, s2 = 17.7 мг%
- Группа, занимающаяся бегом марафонской дистанции: x3 = 64.8 мг%, s3 = 14.3 мг%
Затем можно вычислить сумму квадратов отклонений (SS), среднеквадратическое отклонение (MS) и F-значение:
- SS (межгрупповая) = 13943.56
- SS (внутригрупповая) = 11946.18
- MS (межгрупповая) = 6971.78
- MS (внутригрупповая) = 170.66
- F-значение = 40.84 (при использовании однофакторного ANOVA с 2 и 207 степенями свободы и уровнем значимости 0.05)
Так как F-значение значительно превышает критическое значение (3.06), мы можем отвергнуть нулевую гипотезу о равенстве средних уровней ХЛПВП в трех группах. Следовательно, на уровне значимости 0.05 различия между группами являются статистически значимыми.